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Abstract

The structural, electronic, elastic, magnetic and optical properties of transition

metal-based full Heusler compounds Cu2TiSi, Cu2ZrGe, Ru2TiSi, Ru2VSi, Rh2TiSi

and Rh2VSi have been investigated by utilizing self-consistent full potential lin-

earized augmented plane wave (FP-LAPW) method within density functional the-

ory. The calculation has been performed in WEIN2k by Perdew-Burke-Ernzerhof-

generalized gradient approximations (PBE-GGA). We get the stable structure for

ferromagnetic minimum energy calculations of these compounds. The symmetric

behavior in the DOS at the Fermi level of both spin channels shows Cu2TiSi and

Cu2ZrGe true metallic nature. Also, the direct band gap and zero value of the in-

direct band gap of Ru2TiSi with minimum DOS in both spin channels at the fermi

level indicate the antiferromagnetic behavior. Ru2TiSi alloys can be used as future

material for optoelectronics. In the band structure of Ru2VSi, there has been band

overlapping across the fermi level in the majority spin channel denotes metallic na-

ture and direct band gap at the gamma point in the down spin channel denotes the

semicondutor behaviour but it is not true half metal. The Rh2TiSi, Rh2VSi system

has paramagnetic and ferromagnetic properties respectively from their density of

states which shows metallic nature. As low magnetic moments of all compounds

that do not obey the Slater-Pauling rule. However, the bulk modulus (B), Young’s

modulus (E), the shear modulus (G) and Poisson’s ratio (v) have been obtained.

The optical parameters that are complex dielectric tensor, refractive index, extinc-

tion coefficient, reflectivity, absorption coefficient, Electron energy loss and optical

conductivity has been calculated.
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Chapter 1

Introduction

Heusler alloys are important for magnetic data storage in our modern science. It has

also the utilization in various fields like absorption, electricity production, energy

storage and, in optoelectronics. We calculate properties for some metallic system,

which exhibits the metallic behavior in the density of states and the band structure

of these compounds. The antiferromagnetic semiconductor and half-metal have in-

dicated extensive attention in spintronics [1, 2]. Half-metallicity was first inferred

by de Groot and collaborators in a half-Heusler alloy in 1983 [3]. However, Heusler

alloys are divided into two main categories; the full heusler which has stoichiometric

formula X2YZ and the half-heusler [4] that stoichiometric formula XYZ alloys, where

X and Y are transitional metals and Z is group III, IV and, V element [5]. The full

Heusler X2YZ alloys with FCC lattices are characterized as the positions X1(1/4,

1/4, 1/4), X2(3/4, 3/4, 3/4), Y(1/2, 1/2, 1/2) and Z(0, 0, 0). These configurations

mainly are affected by valence electrons of X and Y atoms [6–8]. Full-Heuslor

alloys are of two types of structure. The first of these is the Hg2CuTi structure

is X2YZ which forms when the nuclear charge of X is lesser than Y and the sec-

ond is the Cu2MnAl structure which forms under the condition when the nuclear

charge of Y is less than of X [9]. The Hg2CuTi structure which has the space group

(216, F43̄m) and Cu2MnAl structure which has the space group (225, Fm3̄m). The
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Introduction

Cu2TiSi and Cu2ZrGe compounds have a greater impact from the theoretical point

of view. Concerning to their applications; they are less affected by external fields

due to their low magnetic moment. Thus, they do not generate annoying strong

magnetic field much. In the present work, we explore the structural, elastic, elec-

tronic, magnetic and optical properties of Copper, Ruthenium and Rhodium base

heusler alloys. Semiconductors which are too fragile and weak for structural appli-

cations are repeatedly used in computers and other electronic devices and ceramics,

polymers and batteries. The application is just about everything computerized, for

instance, phones, computers, printers, gaming devices calculators and semiconduc-

tor integrated circuits [10]. Although half-Heusler alloys like XYZ structure have

attracted a lot of interest. The second family of Heusler compounds, the so-called

full-Heusler alloys have been studied much more extensively due to the existence of

diverse magnetic phenomena, [11]. In this paper, the electronic structures and the

Cu2MnAl type space group (225, Fm3̄m) of Cu2TiSi, Cu2ZrGe, Rh2TiSi, Rh2VSi

are metallic nature and semiconductor properties of Ru2TiSi as well as down spin

channel of Ru2VSi is studied via the first principles method, based on the fact that

the number of 3d valence electrons in the Rh, Ru, Cu atoms is higher than that in

the Ti, V, Zr atoms [12–17]. The basic thing of these electronic devices is to inject

the spin-polarized electrical current into semiconductors [18] in spintronics.

There are varieties of full heusler alloys for their unique characteristics under spin

injection to the antiferromagnetic semiconductor and non-magnetic materials for

using it in Hard disk drive read head and producing spin-polarised electrons in

antiferromagnetic materials in spintronics. Usually, in this thesis, there is a try

to search for those type of material that helps us to produce materials that can

store a vast amount of electrical data. Antiferromagnetic Heusler alloys are fully

compatible with other ferromagnetic and non-magnetic Heusler alloys, with small

lattice mess up, large conduction band overlap, and similar interfacial properties.

Therefore, antiferromagnetic Heusler compounds are perfect for a wide range of

applications, such as antiferromagnetic spintronics devices. The metallic compound

is suitable for producing energy storage such as parallel plate capacitors and it is

very useful for optoelectronics. When it is necessary for self-polarization by the

2



Introduction

electromagnetic wave then these metallic alloys are used. Heusler alloys have high

ductile and strength than Iron or from some single elements; it should be made for

bringing high mechanical strength within the metal alloys even individually they

were less strength. It is used where it needs high tensile stress. This material can

be used for future energy storage and speedy transmission of data in spintronics. To

predict good reflectors and pefect strengths in metal alloys.

This thesis has arranged in a way that Basic Quantum Mechanics is in chapter 2,

Density functional theory is in chapter 3 and Computational details is in chapter 4.

The result has been given in chapter 5 for copper-based system and finally chapter

6 and 7 have arranged with the result of Ruthenium and Rhodium-based heusler

compound respectively. Finally conclusion has given in chapter 8.

3



Chapter 2

Basic Quantum Mechanics

2.1 Schrödingers groundbreaking equation

Erwin Schrödinger’s attempt to describe the so-called ‘matter waves’ in 1926, where

he used de Broglie’s relations to describe hypothetical plane waves, led to the

most general form of the famous equation named after him, the time-dependent

Schrödinger equation [19]

i~
∂

∂t
Ψ(~r, t) = ĤΨ(~r, t) (2.1)

It is often impracticable to use a complete relativistic formulation of the formula;

therefore Schrödinger himself postulated a non-relativistic approximation which is

nowadays often used, especially in quantum chemistry.

Using the Hamiltonian for a single particle

Ĥ = T̂ + V̂ = − ~2

2m
~∇2 + V (~r, t) (2.2)

leads to the (non-relativistic) time-dependent single-particle Schrödinger equation

4



Basic Quantum Mechanics

i~
∂

∂t
Ψ(~r, t) =

[
− ~2

2m
~∇2 + V (~r, t)

]
Ψ(~r, t). (2.3)

In this thesis, from now on only non-relativistic cases are considered.

For N particles in three dimensions, the Hamiltonian is

Ĥ =
N∑
i=1

p̂2
i

2mi

+ V (~r1, ~r2, . . . , ~rN , t) =

−~2

2

N∑
i=1

1

mi

∇2
i + V (~r1, ~r2, . . . , ~rN , t) .

(2.4)

The corresponding Schrödinger equation reads

i~
∂

∂t
Ψ (~r1, ~r2, . . . , ~rN , t) =[

−~2

2

N∑
i=1

1

mi

∇2
i + V (~r1, ~r2, . . . , ~rN , t)

]
Ψ (~r1, ~r2, . . . , ~rN , t)

(2.5)

2.2 Time-independent equation

Special cases are the solutions of the time-independent Schrödinger equation, where

the Hamiltonian itself has no time-dependency (which implies a time-independent

potential V (~r1, ~r2, . . . , ~rN , ), and the solutions therefore describe standing waves

which are called stationary states or orbitals). The time-independent Schrödinger

equation is not only easier to treat, but the knowledge of its solutions also provides

crucial insight to handle the corresponding time-dependent equation.

The time-independent equation is obtained by the approach of separation of vari-

ables, i.e. the spatial part of the wave function is separated from the temporal part

via [20]

Ψ (~r1, ~r2, . . . , ~rN , t) = ψ (~r1, ~r2, . . . , ~rN) τ(t) = ψ (~r1, ~r2, . . . , ~rN) .e−iωt. (2.6)

5



Basic Quantum Mechanics

Furthermore, the l.h.s. of the equation reduces to the energy eigenvalue of the Hamil-

tonian multiplied by the wave function, leading to the general eigenvalue equation

Eψ (~r1, ~r2, . . . , ~rN) = Ĥψ (~r1, ~r2, . . . , ~rN) (2.7)

Again, using the many-body Hamiltonian, the Schrödinger equation becomes

Eψ (~r1, ~r2, . . . , ~rN) =[
−~2

2

N∑
i=1

1

mi

∇2
i + V (~r1, ~r2, . . . , ~rN)

]
ψ (~r1, ~r2, . . . , ~rN) .

(2.8)

2.3 The wave function

In the last section, the term wave function was repeatedly used. Therefore, and for

a better understanding of the following a closer look at the wave function is taken.

The first and most important postulate is that the state of a particle is completely

described by its (time-dependent) wave function, i.e.the wave function contains all

information about the particle’s state. For the sake of simplicity the discussion is

restricted to the time-independent wave function. A question always arising with

physical quantities is about possible interpretations as well as observations. The

Born probability interpretation of the wave function, which is a major principle of the

Copenhagen interpretation of quantum mechanics, provides a physical interpretation

for the square of the wave function as a probability density [21,22]

|ψ (~r1, ~r2, . . . , ~rN)|2 d~r1d~r2 . . . d~rN . (2.9)

Equation(2.9) describes the probability that particles 1,2,...,N are located simultane-

ously in the corresponding volume element d~r1d~r2 . . . d~rN [23]; What happens if the

positions of two particles are exchanged, must be considered as well. Following

merely logical reasoning, the overall probability density cannot depend on such an

exchange, i.e.

6



Basic Quantum Mechanics

|ψ (~r1, ~r2, . . . , ~ri, ~rj, . . . , ~rN)|2 = |ψ (~r1, ~r2, . . . , ~rj, ~ri, . . . , ~rN)|2 (2.10)

There are only two possibilities for the behavior of the wave function during a particle

exchange. The first one is a symmetrical wave function, which does not change due

to such an exchange. This corresponds to bosons (particles with integer or zero spin).

The other possibility is an anti-symmetrical wave function, where an exchange of

two particles causes a sign change, which corresponds to fermions (particles which

half-integer spin) [24, 25]. In this text only electrons are from interest, which are

fermions. The anti-symmetric fermion wave function leads to the Pauli principle,

which states that no two electrons can occupy the same state, whereas state means

the orbital and spin parts of the wave function [26](the term spin coordinates will

be discussed later in more detail). The an-tisymmetry principle can be seen as

the quantum-mechanical formalization of Pauli’s theoretical ideas in the description

of spectra (e.g. alkaline doublets) [27]. Another consequence of the probability

interpretation is the normalization of the wave function. If equation (2.9) describes

the probability of finding a particle in a volume element,setting the full range of

coordinates as volume element must result in a probability of one, i.e. all particles

must be found somewhere in space. This corresponds to the normalization condition

for the wave function.

∫
d~r1

∫
d~r2 . . .

∫
d~rN |ψ (~r1, ~r2, . . . , ~rN)|2 = 1 (2.11)

Equation (2.11) also gives insight on the requirements a wave function must fulfill

in order to be physical acceptable. Wave functions must be continuous over the

full spatial range and square-integratable [28]. Another very important property of

the wave function is that calculating expectation values of operators with a wave

function provides the expectation value of the corresponding observable for that wave

function [29]. For an observable O (~r1, ~r2, . . . , ~rN) , this can generally be written as

7
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O = 〈O〉 =∫
d~r1

∫
d~r2 . . .

∫
d~rNψ

∗ (~r1, ~r2, . . . , ~rN) Ôψ (~r1, ~r2, . . . , ~rN)
(2.12)

2.4 Atoms and molecules

All atomic and molecular systems deal with charged particles.The single electron

Schrödinger equation where the electron moves in a Coulomb potential,

i~
∂

∂t
ψ(~r) =

[
− ~2

2m
~∇2 − e2

4πε0
· 1

|~r|

]
ψ(~r) (2.13)

marks and good starting point.

For the sake of simplicity, the so-called atomic units are introduced at this point for

subsequent usage. That means the electron mass me,the reduced Planck constant

(Dirac constant) ~ as well as the vacuum permitivity factor 4πε0 are all set to

unity [30].

The Schrödinger equation for the single electron simplifies to

Eψ(~r) =

[
−1

2
~∇2 − 1

|~r|

]
ψ(~r) (2.14)

This form of the Schrödinger equation is analytically solvable. Although for the

description of matter, even atoms, the Schrödinger equation exceeds analytical ac-

cessibility soon.Usage of (2.8) allows a construction of a generalized many-body

Schrödinger equation for a system composed of N electrons and M nuclei, where

external magnetic and electric fields are neglected.

Eiψi

(
~r1, ~r2, . . . , ~rN , ~R1, ~R2, . . . , ~RN

)
=

Ĥψ
(
~r1, ~r2, . . . , ~rN , ~R1, ~R2, . . . , ~RN

) (2.15)

Equation (2.15) doesn’t seem overly complicated on the first look, but an examina-

tion of the corresponding molecular Hamiltonian

8
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Ĥ = −1

2

N∑
i=1

∇2
i −

1

2

M∑
k=1

∇2
k −

N∑
i=1

M∑
k=1

Zk
rik

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
k=1

M∑
l>k

ZkZl
Rkl

(2.16)

more generally ,it can be written as

Ĥ =
∑
i

− ~2

2me

∇2
i +

∑
I

− ~2

2mI

∇2
I +

∑
iI

− ZIe
2∣∣∣~ri − ~RI

∣∣∣
+

1

2

∑
i 6=j

e2

|~ri − ~rj|
+

1

2

∑
I 6=J

ZIZJe
2∣∣∣~RI − ~RJ

∣∣∣
(2.17)

reveals the real complexity of the equation.

In equation (2.16), Mk repsresents the nuclear mass in atomic units (i.e. in

units of the electron mass), Zk and Zl represents the atomic numbers,and ~rij =∣∣∣~i−~j∣∣∣ , rik =
∣∣∣~i− ~Rk

∣∣∣ and Rkl =
∣∣∣~Rk − ~Rl

∣∣∣ reperesents the distances between the

particles (electron-electron nucleus and nucleus-nucleus).

A term by term interpretation of the right hand side in (2.16) reveals that the first

two terms correspond to the kinetic energies of the electrons and nuclei. The latter

three terms denote the potential part of the Hamiltonian in terms of electrostatic

particle-particle interactions. This is reflected by the corresponding signs, where the

negative sign denotes an attractive potential between electrons and nuclei, whereas

the positive signs denote repulsive potentials between electrons and electrons as well

as the nuclei among themselves [23]. Taking advantage of the fact, that the mass of

a proton is approximately 1800 times larger than the mass of an electron, which is

the minimum mass ratio of electron to nucleus (hydrogen atom) and becomes even

higher for heavier atoms, another simplification can be introduced. The so called

Born-Oppenheimer approximation states that due to the mass difference the nucleus

can be, in comparison to the electrons, considered non-moving, i.e. spatially fixed.

One can say that the core movement can be neglected on the timescale of electronic

transitions which means the core movement has no influence on them [21,31,32].

As a consequence, the general Hamiltonian is replaced by the so-called electronic

9
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Hamil-tonian

Ĥ = −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
k=1

Zk
rik

+
N∑
i=1

N∑
j>i

1

rij
(2.18)

. or in terms of operators

Hel = T̂ + Û + V̂ = T̂ + V̂tot. (2.19)

Especially the electronic Schrödinger equation is of major interest for problems of

molecular physics and quantum chemistry. But despite all simplifications a simple

look at equations (2.15) to (2.19) indicates that there are still a few more crucial

points left to deal with until a useful solution can be obtained.

Inspection of equations (2.18) and (2.19) shows that the kinetic energy term ~T

doesn’t depend on the nuclear coordinates Rkl, or in other words, it is only a func-

tion of the electron number. Also the electron-electron repulsion ~U is the same for

every system with only Coulomb interactions. Therefore the only part of the elec-

tronic Hamiltonian which depends on the atomic respectively molecular system is

the external potential V caused by the nucleus-electron repulsion. Subsequently this

also means that ~T and ~U only need the electron number N as input and will therefore

be denoted as ’universal’, whereas ~V is system dependent. The expectation value

of ~V is also often denoted as the external potential Vext, which is consistent as long

as there are no external magnetic or electrical fields [29]. As soon as the external

potential is known, the next step is the determination of the wave functions ψi which

contain all possible information about the system. As simple as the sounds, that

exact knowledge of the external potentials ,i.e. in similarity to classical mechanics,

the largest system which can be solved analytically is a 2-body-system, which cor-

responds to a hydrogen atom. Using all approximations introduced up to now it is

possible to calculate a problem similar to H+
2 a single ionized hydrogen molecule.

To get results for larger systems, further approximations have to be made.

10



Basic Quantum Mechanics

2.5 The Hartree-Fock approcah

In order to find a suitable strategy to approximate the analytically not accessible so-

lutions of many-body problems, a very useful tool is variational calculus, similar to

the least-action principle of classical mechanics.By the use of variational calculus, the

ground state wave function ψ0,which corresponds to the lowest energy of the system

E0,can be approached. A useful literature source for the principles of variational

calculus has been provided by T.Flieÿbach [33].

Hence, for now only the electronic Schrödinger equation is of interest, therefore in

the following sections we set H ≡ Hel, E ≡ Eel, and so on.

Observables in quantum mechanics are calculated as the expectation values of op-

erators [21, 34]. The energy as observable corresponds to the Hamilton operator,

therefore the energy corresponding to a general Hamiltonian can be calculated as

E = 〈Ĥ〉

=

∫
d~r1

∫
d~r2 . . .

∫
d~rNψ

∗ (~r1, ~r2, . . . , ~rN) Ĥψ (~r1, ~r2, . . . , ~rN)
(2.20)

The central idea of the Hartree-Fock approach is that the energy obtained by any

(normalized) trial wave function, different from the actual ground state wave func-

tion, is always an upper bound, i.e. higher than the actual ground state energy.If

the trial function happens to be the desired ground state wave function, the energies

are equal

Etrial ≥ E0, (2.21)

with

Etrial =∫
d~r1

∫
d~r2 . . .

∫
d~rNψ

∗
trial (~r1, ~r2, . . . , ~rN) Ĥψtrial (~r1, ~r2, . . . , ~rN)

(2.22)

11
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and

E0 =∫
d~r1

∫
d~r2 . . .

∫
d~rNψ

∗
0 (~r1, ~r2, . . . , ~rN) Ĥψ0 (~r1, ~r2, . . . , ~rN)

(2.23)

The expressions above are usually inconvenient to handle. For the sake of a compact

notation, in the following the bra-ket notation of Dirac is introduced.For a detailed

description of this notation, the reader is referred to the original publication [35] In

this notation, equations (2.21) to (2.22) are expressed as

〈
ψtrial |Ĥ|ψtrial

〉
= Etrial ≥ E0 =

〈
ψ0|Ĥ|ψ0

〉
(2.24)

Proof : The eigenfunctions ψ of the Hamiltonian Ĥ(each corresponding to an energy

eigenvalue Ei) form a complete basis set, therefore any normalized trial wave function

ψtrial can be expressed as linear combination of those eigenfunctions [36].

ψtrial =
∑
i

λiψi (2.25)

The assumption is made that the eigenfunctions are orthogonal and normalized.

Hence it is requested that the trial wave function is normalized, it follows that

〈ψtrial |ψtrial 〉 = 1 =〈∑
i

λiψi |
∑
j

λjψj

〉
=
∑
i

∑
j

λ∗iλj 〈ψi | ψj〉 =
∑
j

|λj|2
(2.26)

On the other hand,following (2.24) and (2.26)

Etrial =
〈
ψtrial |Ĥ|ψtrial

〉
=

〈∑
i

λiψi|Ĥ|
∑
j

λjψj

〉
=
∑
j

Ej |λj|2 (2.27)

Together with the fact that the ground state energy E0 is per definition the lowest

possible energy, and therefore has the smallest eigenvalue (E0 ≤ Ei),it is found that

Etrial =
∑
j

Ej |λj|2 ≥ E0

∑
j

|λj|2 (2.28)

12
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what resembles equation (2.24).

The mathematical framework used above, i.e. rules which assign numerical values to

functions, so called functionals, is also one of the main concepts in density functional

theory. A function gets a numerical input and generates a numerical output whereas

a unctional gets a function as input and generates a numerical output [37]. Equations

(2.20) to (2.28) also include that a search for the minimal energy value while applied

on all allowed (physically possible, cf. 2.4 N-electron wave-functions will always

provide the ground-state wave function (or wave functions, in case of a degenerate

ground state where more than one wave function provides the minimum energy).

Expressed in terms of functional calculus, where ψ → N addresses all allowed N-

electron wave functions, this mean [23]

E0 = min
ψ→N

E[ψ] = min
ψ→N
〈ψ|Ĥ|ψ〉 = min

ψ→N
〈ψ|T̂ + V̂ + Û |ψ〉 (2.29)

For N-electron systems this search is, due to the large number of possible wave

functions on the one hand and limitations in computational power and time, prac-

tically impossible. What is possible is the restriction of the search to a smaller

subset of possible wave function, as it is done in the Hartree-Fock approximation.

In the Hartree-Fock approach, the search is restricted to approximations of the N-

electron wave function by an antisymmetric cf.chapter product of N (normalized)

one-electron wave-functions, the so called spin-orbitals χi(~xi) [38]. A wave function

of this type is called Slater-determinant, and reads [23,38].

ψ0 ≈ φSD = (N !)−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1 (~x1) χ2 (~x1) · · · χN (~x1)

χ1 (~x2) χ2 (~x2) · · · χN (~x2)

...
...

. . .
...

χ1 (~xN) χ2 (~xN) · · · χN (~xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.30)
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It is important to notice that the spin-orbitals χ1(~xi) are not only depending on

spatial coordinates but also on a spin coordinate which is introduced by a spin

function, ~xi = ~ri, s. A detailed discussions of the spin orbitals and their (necessary)

properties is omitted in this text, a detailed treatise is provided in the books by

Szabo [26] and Holthausen [23]. As spin orbitals e.g. hydrogen-type orbitals (for

atomic calculations) and linear combinations of them are used [39].

Returning to the variational principle and equation (2.29), the ground state energy

approximated by a single slater determinant becomes

E0 = min
φSD→N

E [φSD] =

min
φSD→N

〈
φSD|Ĥ|φSD

〉
= min

φSD→N

〈
φSD|T̂ + V̂ + Û |φSD

〉 (2.31)

A general expression for the Hartree-Fock Energy is obtained by usage of the Slater

determinant as a trial function

EHF =
〈
φSD|Ĥ|φSD

〉
=
〈
φSD|T̂ + V̂ + Û |φSD

〉
(2.32)

For the sake of brevity, a detailed derivation of the final expression for the Hartree-

Fock energy is omitted.It is a straightforward calculation found for example in the

Book by Schwabl [34]. The final expression for the Hartree-Fock energy contains

three major parts [23].

EHF =
〈
φSD|Ĥ|φSD

〉
=

N∑
i

(i|ĥ|i) +
1

2

N∑
i

N∑
j

[(ii | jj)− (ij | ji)] (2.33)

with (
i
∣∣∣ĥi∣∣∣ i) =

∫
χ∗i (~xi)

[
−1

2
~∇2
i −

M∑
k=1

Zk
rik

]
χi (~xi) d~xi (2.34)

(ii | jj) =

∫∫
|χi (~xi)|2

1

rij
|χj (~xj)|2 d~xid~xj (2.35)

(ii | jj) =

∫∫
χi (~xi)χ

∗
j (~xj)

1

rij
χj (~xj)χ

∗
i (~xi) d~xid~xj (2.36)
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The first term corresponds to the kinetic energy and the nucleus-electron interac-

tions, ĥ denoting the single particle contribution of the Hamiltonian, whereas the lat-

ter two terms correspond to electron-electron interactions. They are called Coulomb

and exchange integral, respectively [23,26]. Examination of equations (2.33) to (2.36)

furthermore reveals, that the Hartree-Fock energy can be expressed as a functional

of the spin orbitals EHF = E [χi]. Thus,variation of the spin orbitals leads to the

minimum energy [23]. An important point is that the spin orbitals remain orthonor-

mal during minimization. This restriction is accomplished by the introduction of

Lagrangian multipliers λi in the resulting equations, which represent the Hartree-

Fock equations. For a detailed derivation, the reader is referred to the book by

Szabo and Ostlund [23,26,33].

Finally, one arrives at

f̂χi = λiχi i = 1, 2, . . . , N (2.37)

f̂i = −1

2
~∇2
i −

M∑
k=1

Zk
rik

+
N∑
i

[
Ĵj (~xi)− K̂j (~xi)

]
= ĥi + V̂ HF (i), (2.38)

the Fock operator for the i − th electron. In similarity to (2.33) to (2.36), the

first two terms represent the kinetic and potential energy due to nucleus-electron

interaction,collected in the core Hamiltonian ĥi, whereas the latter terms are sums

over the Coulomb operators Ĵj and the exchange operators K̂j with the other j elec-

trons, which form the Hartree-Fock potential V̂ HF . There the major approximation

of Hartree-Fock can be seen. The two electron repulsion operator from the origi-

nal Hamiltonian is exchanged by a one-electron operator V̂ HF which describes the

repulsion in average [23].

2.6 Limitations and failings of the Hartree-Fock

approach

Atoms as well as molecules can have an even or odd number of electrons. If the

number of electrons is even and all of them are located in double occupied spatial

orbitals φi, the compound is in a singlet state. Such systems are called closed −
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shell systems.Compounds with an odd number of electrons as well as compounds

with single occupied orbitals, i.e. species with triplet or higher ground state, are

called closed-shell systems respectively. These two types of systems correspond

to two different approaches of the Hartree-Fock method. In the restricted HF-

method (RHF), all electrons are considered to be paired in orbitals whereas in the

unrestricted HF (UHF)-method this limitation is lifted totally. It is also possible to

describe open-shell systems with a RHF approach where only the single occupied

orbitals are excluded which is then called a restricted open-shell HF(ROHF) which

is an approach closer to reality but also more complex and therefore less popular

than UHF [23].

There are also closed-shell systems which require the unrestricted approach in order

to get proper results. For instance, the description of the dissociation of H2 (i.e. the

behavior at large internuclear distance), where one electron must be located at one

hydrogen atom, can logically not be obtained by the use of a system which places

both electrons in the same spatial orbital. Therefore the choice of method is always

a very important point in HF calculations [38]. The size of the investigated system

can also be a limiting factor for calculations. Kohn tates a number of M = p5 with

3 ≤ p ≤ 10 parameters for a result with sufficient accuracy in the investigation of

the H2 systems [40]. For a system with N=100 (active) electrons the number of

parameters rises to

M = p3N = 3300 to 10300 ≈ 10150 to 10300. (2.39)

Equation (2.39) states, that the minimization of the energy would have to be

performed in a space of at least 10150 dimension which exceeds the computational

possibilities nowadays by far. HF-methods are therefore restricted to systems with

a small number of involved electrons (N ≈ 10). Referring to the exponential factor

in (2.39) this limitation is sometimes called exponential wall [40]. Since a many

electron wave function cannot be described entirely by a single Slater determinant,

the energy obtained by HF calculations is always larger than the exact ground state

energy. The most accurate energy obtainable by HF-methods is called the Hartree-
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Fock-limit [23]. The difference between EHF and Eexact is called correlation energy

and can be denoted as [41]

EHF
corr = Emin − EHF . (2.40)

Despite the fact that Ecorr is usually small against Emin, as in the example of a N2

molecule where

EHF
corr = 14.9eV < 0.001.Emin, (2.41)

it can have a huge influence [42]. For instance, the experimental dissociation energy

of the N2 molecule is

Ediss = 9.9eV < Ecorr (2.42)

which corresponds to a large contribution of the correlation energy to relative en-

ergies such as reaction energies which are of particular interest in quantum chem-

istry [42]. The main contribution to the correlation energy arises from the mean

field approximation used in the HF-method. That means one electron moves in the

average field of the other ones, an approach which completely neglects the intrinsic

correlation of the electron movements. To get a better understanding what that

means, one may picture the repulsion of electrons at small distances which clearly

cannot be covered by a mean-field approach like the Hartree-Fock-method [23].
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Chapter 3

Density functional theory

3.1 A new base variable - the electron density

In the 2.4 about the wave function ψ, a general statement about the calculation of

observables has been provided. A quantity calculated in a very similar way is the

topic of this section. The electron density (for N electrons) as the basic variable of

density functional theory is defined as [23,43].

n(~r) = N
∑
s1

∫
d~x2 . . .

∫
d~xNψ

∗ (~x1, ~x2, . . . , ~xN)ψ (~x1, ~x2, . . . , ~xN) (3.1)

What has to be mentioned is that the notation in (3.1) considers a wave function de-

pendent on spin and spatial coordinates. In detail, the integral in the equation gives

the probability that a particular electron with arbitrary spin is found in the volume

element d~r1. Due to the fact that the electrons are indistinguishable, N times the

integral gives the probability that any electron is found there. The other electrons

represented by the wave function ψ(~r1, ~r2, . . . , ~xN) have arbitrary spin and spatial

coordinates [23]. If additionally the spin coordinates are neglected, the electron

density can even be expressed as measurable observable only dependent on spatial
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coordinates [40, 43].

n(~r) = N

∫
d~r2 . . .

∫
d~rNψ

∗ (~r1, ~r2, . . . , ~rN)ψ (~r1, ~r2, . . . , ~rN) (3.2)

which can e.g. be measured by X-ray diffraction [23].

Before presenting an approach using the electron density as variable, it has to be

ensured that it truly contains all necessary informations about the system. In detail

that means it has to contain information about the electron number N as well as

the external potential characterized by V̂ [23]. The total number of electrons can

be obtained by integration the electron density over the spatial variables [23]

N =

∫
d~rn(~r). (3.3)

What is left to proof is that also the external potential is characterized uniquely by

the electron density, where uniquely means up to an additive constant

3.2 The Hohenberg-Kohn theorems

The “basic lemma of Hohenberg-Kohn”[4] states that not only n(~r) is a functional

of v(~r) but that also (~r) is up to a constant determined by n(~r) uniquely [23,40,43].

Since the original publication of Hohenberg and Kohn deals with an electron gas,

the Hamiltonian is resembled by the electronic Hamilton operator introduced in

equation (2.18) Ĥel = T̂ + V̂ + Û with the one difference that the non-universal

contribution V̂ in this case represents a general external potential (which in case

of the electronic Hamilton approximated by Born-Oppenheimer contains a nuclear

field contribution) [23,29,43].

Following the original approach of Hohenberg and Kohn, accompanied by their proof

via reductio ad absurdum, the discussion in this thesis is restricted to non-degenerate

ground states [43]. This restriction nevertheless doesn’t affect the presented proof

for the second theorem and can be lifted as well for the first theorem [44,45].

The energy of the system can be denoted as
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E = 〈ψ|Ĥ|ψ〉 = 〈ψ|T̂ + V̂ + Û |ψ〉 =

∫
v(~r)n(~r)d~r + 〈ψ|T̂ + Û |ψ〉 (3.4)

which will be used for the proof of Hohenberg and Kohn’s first theorem.

3.2.1 Theorem I

The external potential v(~r) is a functional of the electron density n(~r) and, up to

an unimportant constant, uniquely determined by it. [43]

Proof. It is assumed that there exist two external potentials v(~r) and v′(~r) which

differ by more than just a trivial constant. Furthermore, the assumption is made,

that both potentials give rise to the same electron density n(~r). Clearly, arising from

the nature of V̂ n that case there have to be two different Hamiltonians Ĥ and Ĥ ′.

Furthermore ψ and ψ′ have to be different, since they fulfill different Schrödinger

equations. Finally also the energies E and E ′ associated with the particular wave

function differ [40, 46].

Now the two wave functions ψ and ψ′ are used as trial functions assuming the other

wave function is the ground state wave function. Then the expressions

E ′0 = 〈ψ′|Ĥ ′|ψ′〉 < 〈ψ|Ĥ ′|ψ〉 =

〈ψ|Ĥ + V̂ ′ − V̂ |ψ〉 = 〈ψ|Ĥ|ψ〉+ 〈ψ|V̂ ′ − V̂ |ψ〉
(3.5)

and

E0 = 〈ψ|Ĥ|ψ〉 < 〈ψ′|Ĥ|ψ′〉 =

〈ψ′|Ĥ ′ + V̂ − V̂ ′|ψ′〉 = 〈ψ′|Ĥ ′|ψ′〉+ 〈ψ′|V̂ − V̂ ′|ψ′〉
(3.6)

are obtained. By the use of (3.4), this can be rewritten as

E ′0 < E0 +

∫
[v′(~r)− v(~r)]n(~r)d~r (3.7)

and

E0 < E ′0 +

∫
[v(~r)− v′(~r)]n(~r)d~r (3.8)
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By summation of (3.7) and (3.8) the inequality

E ′0 + E0 < E0 + E ′0 (3.9)

is obtained, which represents an inconsistency and therefore provides by reduction

to absurdity the proof v(~r) is truly a unique functional of n(~r).

The first Hohenberg-Kohn theorem can also be written in another form which is

some-times called the “strong form” of the Hohenberg-Kohn theorem [47]. Here

∆v(~r) and ∆n(~r) correspond to the change in potential and electron density respec-

tively: ∫
∆v(~r)∆n(~r) < 0 (3.10)

Whereas equation (3.10) can be derived from the original proof [48] it can also be

derived perturbatively. The importance of this proof lies in the fact, that it not only

implies the first Hohenberg Kohn theorem (if ∆v(~r) 6= 0 clearly also ∆n(~r) must

not vanish) but also provides an assertion about the signs of ∆v(~r) and ∆n(~r), i.e.

a (mostly) positive potential ∆v(~r) requires a (mostly) negative electron density

∆n(~r) to ensure the negativity of the integral in (3.10) [47].

From the first Hohenberg Kohn theorem it is obvious that also the ground state

wave function is a unique functional of the ground state electron density

ψ0 (~r1, ~r2, . . . , ~rN) = ψ [n0(~r)] . (3.11)

Furthermore, recalling (2.12), the ground state expectation value of any observable

is a functional of n0(~r) too, i.e.

O0 = O [n0(~r)] =
〈
ψ [n0(~r)] |Ô|ψ [n0(~r)]

〉
. (3.12)

Among these observables is the ground state energy, the expectation value of the

Hamil-tonian, which is of great importance. Recalling equation (3.4), the ground
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state energy corresponding to an potential v(~r) can be denoted as

Ev,0 = Ev [n0(~r)] =
〈
ψ [n0(~r)] | Ĥψ [n0(~r)]

〉
=∫

v(~r)n0(~r)d~r +
〈
ψ [n0(~r)] |T̂ + Û |ψ [n0(~r)]

〉 (3.13)

To obtain a more convenient handling of equation (3.13), the Hohenberg-Kohn func-

tional FHK [n(~r)] and subsequently, the energy functional Ev[n(~r)] are defined: [43]

FHK [n(~r)] ≡
〈
ψ [n0(~r)] |T̂ + Û |ψ [n0(~r)]

〉
(3.14)

Ev[n(~r)] ≡
∫
v(~r)n0(~r)d~r + FHK [n(~r)] (3.15)

In similarity to the terminology introduced in the section about the Hartree-Fock

method, the Hohenberg-Kohn functional represents the system-independent or uni-

versal part. Equation (3.13) furthermore leads to another crucial finding of the

original paper by Hohenberg and Kohn, which is often addressed as the second

theorem of Hohenberg and Kohn [43].

3.2.2 Theorem II

The ground state energy can be derived from the electron density by the use of

variational calculus. The electron density, which provides a minimum of the ground

state energy, is therefore the exact ground state density. The second Hohenberg-

Khon Theorem states the energy variational principle. It implyes that for any trial

density which is not ground state density in a condition n′(r) ≥ 0 and
∫
n′(r)dr =

N [49]. That is

E0 ≤ Ev[n
′]. (3.16)

where Ev[n
′] is the energy functional of next equation (3.18)

Originally this second theorem has been proved by variation calculus, [43] the proof

pro-vided subsequently is a different one, namely the so called constrained-search

approach, introduced by Levy and Lieb [50,51] and subsequently thoroughly exam-

ined in the books by Parr, Yang as well as Kryachko and Ludena [52,53]. Since the
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wave function is a unique functional of the electron density, every trial wave function

ψ′ corresponding to a trial density n′(~r) following equation (3.2). According to the

Rayleigh-Ritz principle, the ground state energy is obtained as

Ev,0 = min
ψ′

〈
ψ′|Ĥ|ψ′

〉
. (3.17)

Proof. In principle, the minimization can be carried out in two steps. In the first

step, a trial electron density n′(~r) is fixed. The class of trial functions corresponding

to that electron density is then denoted by ψ′αn′ [40] Then, the constrained energy

minimum is defined as

Ev [n′(~r)] ≡ min
α

〈
ψ′αn′ |Ĥ|ψ′αn′

〉
=

∫
v(~r)n′(~r)d~r + F [n′(~r)] (3.18)

In that notation, F [n′(~r)] is the universal functional

F [n′(~r)] ≡ min
α

〈
ψ′αn′ |T̂ + Û |ψ′αn′

〉
(3.19)

which is clearly related to the Hohenberg-Kohn functional in (3.13). What is

important to notice at this point is that the universal functional F [n′(~r)] requires

no explicit knowledge of v(~r).

In the second step, equation (3.5) is minimized over all trial densities n′(~r) :

Ev,0 = min
n′(~r)

Ev [n′(~r)] = min
n′(~r)

{∫
v(~r)n′(~r)d~r + F [n′(~r)]

}
(3.20)

Now, for a non-degenerate ground state,the energy in (3.20) is attained, if n′(~r) is

the actual ground state density.

Furthermore, the constrained search approach finally lifts the restriction to non-

degenerate ground states. If a ground state density corresponding to a number of

wave functions is selected, only one of the wave functions connected with the energy

of the degenerate ground state is found [23] Recapitulating, it has been shown that

density functional theory provides a clear and mathematical exact framework for

the use of the electron density as base variable. Nevertheless, nothing of what has
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been derived is of practical use. Or in other words, the Hohenberg-Kohn theorems,

as important as they are, do not provide any help for the calculation of molecu-

lar properties and also don’t provide any information about ap-proximations for

functionals like F [n(~r)]. In the direct comparison to the variational approach of

the Hartree-Fock method, the variational principle introduced in the sec-ond theo-

rem of Hohenberg and Kohn is even more tricky. Whereas in wave-function based

approaches like Hartree-Fock or configuration interaction [23] (CI) the obtained

energy value provides information about the quality of the trial wave function (the

lower E, the better the wave function), this is not the case in the variational prin-

ciple based on the electron density. More than that, it can even happen that some

functionals provide energies lower than the actual ground state energy in particular

calculations [23]

Also important to mention is that there are certain functions n(r) which would

fulfill the requirements [40] and therefore possible ground state densities, but do

not correspond to a potential v(~r). Therefore another requirement on the electron

density is its v-representability, i.e. it must correspond to some potential [40]

3.3 The Kohn-Sham equations

It is indeed appealing that the ground-state energy of a many-electron system can

be obtained as the minimum of the energy functional

E[n] =

∫
n(r)v(r)dr + F [n] (3.21)

where

F [n] = T [n] + Vee[n] (3.22)

The ground-state electron density is the density that minimizes E[n] and hence

satisfies the Euler equation

µ = v(r) +
δF [n]

δn(r)
(3.23)
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where µ is the Lagrange multiplier associated with the constraint

∫
n(r)dr = N (3.24)

Among all possible solutions of (3.23), one takes that which minimizes E[n].

Thomas-Fermi and related models constitute a direct approach, whereby one con-

structs explicit approximate forms for T [n] and Vee [n]. This produces a nice simplicity-

the equations involve electron density alone. There are seemingly insurmountable

difficulties in going beyond the crude level of approximation. In a trade of simplicity

for accuracy, Kohn and Sham (1965) invented an ingenious indirect approach to the

kinetic-energy functional T [n], the Kohn-Sham (KS) method. They thereby turned

density functional theory into a practical tool for rigorous calculations.

Kohn and Sham proposed introducing orbitals into the problem in such a way that

the kinetic energy can be computed simply to good accuracy, leaving a small residual

correction that is handled separately. To understand what is involved and what

Kohn and Sham did, it is convenient to begin with the exact formula for the ground-

state kinetic energy,

T =
N∑
i

ni

〈
ψi

∣∣∣∣−1

2
∇2

∣∣∣∣ψi〉 (3.25)

where the ψi and ni are, respectively, natural spin orbitals and their occupation

numbers. The Pauli principle requires that 0 6 ni 6 1; we are assured from the

Hohenberg-Kohn theory that this T is a functional of the total electron density

n(r) =
N∑
i

ni
∑
s

|ψi(r, s)|2 (3.26)

For any interacting system of interest, there are an infinite number of terms in (3.25)

or (3.26), which is ponderous at best. Kohn and Sham (1965) showed that one can

build a theory using simpler formulas, namely

Ts[n] =
N∑
i

〈
ψi

∣∣∣∣−1

2
∇2

∣∣∣∣ψi〉 (3.27)
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and

n(r) =
N∑
i

∑
s

|ψi(r, s)|2 (3.28)

Equations (3.27) and (3.28) are the special case of (3.25) and (3.26) having ni = 1

for N orbitals and ni = 0 for the rest; this representation of kinetic energy and

density holds true for the determinantal wave function that exactly describes N

noninteracting electrons.

We know that any nonnegative, continuous, and normalized density n is N repre-

sentable and always can be decomposed according to (3.28). But given a n(r), how

can we have a unique decomposition in terms of orbitals so as to give a unique value

to Ts[n] through (3.27)? In analogy with the Hohenberg-Kohn definition of the uni-

versal functional FHK[n], Kohn and Sham invoked a corresponding noninteracting

reference system, with the Hamiltonian

Ĥs =
N∑
i

(
−1

2
∇2
i

)
+

N∑
i

vs(r) (3.29)

in which there are no electron-electron repulsion terms, and for which the ground-

state electron density is exactly n. For this system there will be an exact determi-

nantal ground-state wave function

Ψs =
1√
N !

det [ψ1ψ2 · · ·ψN ] (3.30)

where the ψi are the N lowest eigenstates of the one-electron Hamiltonian ĥs :

ĥsψi =

[
−1

2
∇2 + vs(r)

]
ψi = εiψi (3.31)

The kinetic energy is Ts[n], given by (3.27),

Ts[n] =

〈
Ψs

∣∣∣∣∣
N∑
i

(
−1

2
∇2
i

)∣∣∣∣∣Ψs

〉

=
N∑
i=1

〈
ψi

∣∣∣∣−1

2
∇2

∣∣∣∣ψi〉
(3.32)
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and the density is decomposed as in (3.28). The foregoing definition of Ts[n] leaves an

undesirable restriction on the density-it needs to be noninteracting v-representable;

that is, there must exist a noninteracting ground state with the given n(r). This

restriction on the domain of definition of Ts[n] can be lifted, and Ts[n] of the form

equation (3.27) can be defined for any density derived from an antisymmetric wave

function.

The quantity Ts[n], although uniquely defined for any density, is still not the exact

kinetic-energy functional T [n]. The very clever idea of Kohn and Sham (1965)

is to set up a problem of interest in such a way that Ts[n] is its kinetic-energy

component, exactly. The resultant theory turns out, as we shall immediately see, to

be of independent-particle form. Nevertheless, it is exact.

To produce the desired separation out of Ts[n] as the kinetic energy component,

rewrite (3.22) as

F [n] = Ts[n] + J [n] + Exc[n] (3.33)

where

Exc[n] = T [n]− Ts[n] + Vee[n]− J [n] (3.34)

The defined quantity Exc[n] is called the exchange-correlation energy; it contains

the difference between T and Ts, presumably fairly small, and the nonclassical part

of Vee[n]. The Euler equation (3.23) now becomes

µ = veff (r) +
δTs[n]

δn(r)
(3.35)

where the KS effective potential is defined by

veff(r) = v(r) +
δJ [n]

δn(r)
+
δExc[n]

δn(r)
= v(r) +

∫
n (r′)

|r− r′|
dr′ + vxc(r) (3.36)

with the exchange-correlation potential

vxc(r) =
δExc[n]

δn(r)
(3.37)

We do not at first attempt the direct solution of equation (3.35), for equation (3.35)
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Initial guess
n(r)

Calculate effective potential
Veff(r) = Vext(r) + VHartree [n] + Vxc[n]

Solve KS equation[
− ~

2m∇
2 + Veff(r)

]
ψi(r) = εmeψi(r)

Calculate electron density
n(r) =

∑N
i=1 Ψ∗i (r)Ψi(r)

Self-
consistent?

Output quantities
Potential Energy, Static struc-

ture,Born effective charges, etc...

yes

No

Figure 3.1: Flow chart of solving the Kohn-Sham equation

is merely a rearrangement of (3.23) and the explicit form of Ts[n] in terms of density

is as yet unknown. Rather, we follow the indirect approach designed by Kohn and

Sham;

The Kohn-Sham treatment runs as follows. Equation (3.35) with the constraint

(3.24) is precisely the same equation as one obtains from conventional density-

functional theory when one applies it to a system of noninteracting electrons moving

in the external potential vs(r) = veil (r). Therefore, for a given verf (r), one obtains

the ρ(r) that satisfies (3.35) simply by solving the N one-electron equations

[
−1

2
∇2 + veff (r)

]
ψi = εiψi (3.38)
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and setting

n(r) =
N∑
i

∑
s

|ψi(r, s)|2 (3.39)

Here, veff depends on n(r) through (3.37); hence, (3.36), (3.38) and (3.39) must

be solved self-consistently. One begins with a guessed n(r), constructs veff (r) from

(3.36), and then finds a new n(r) from (3.38) and (3.39). The total energy can

be computed directly from (3.21) with (3.22). Equations (3.36)-(3.39) are the cele-

brated Kohn-Sham equations. They deserve our careful derivation and analysis, to

which we proceed.

3.4 The Exchange-Correlation Functional in the

Kohn Schemes

We should also clarify at this stage that there are inherent differences between the

ex-change-correlation energy that appears in the Kohn-Sham formalism and their

namesakes, the exchange and correlation energies.

In Hohenberg Kohn theorem the functional is

E[n] =

∫
n(r)v(r)dr + F [n] (3.40)

where

F [n] = T [n] + Vee[n] (3.41)

so Hohenberg Kohn modify the external potential of electron due to nucleus but there

has a limitation of How the density will be decomposed into wave function. Another

limitation is, there is no specific description of electron and electron interaction. In

electron and electron interaction, there is classical term that means Hartree term

and non-classical term. The non-classical term is regarded which comes out from

solving the many body system. In many body system there is a corelation among

electrons. And thus generates corelation energy. But In Hohenberg Kohn theorem

there is no description about this.
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Now we see that in Kohn-Sham equations they define the approximate kinetic en-

ergy in terms of wave function and they did it for individual electron orbital which

occupies electrons. Finally they did summation over all individuals electron orbital

that is N electron orbital which occupies ni = 1

So the Hamilton has build for approximate kinetic energy and effective potential

energy of individual electron from non-interacting system to calculate the interaction

in interacting system. Finally the hamiltonian has been made by summing each

hamiltonian made from single electron. By solving Schrödinger equation we get

wave function for each electron and by which we can construct ground state wave

function and ground state energy for many body system. But in externational

potential, there is no clear description about electron and electron interaction.

In Kohn-Sham scheme the univeral Functional equation (3.33), there is non-classical

term as it is for the exchange correlation of exchange of fermions (electrons) in many

body system. In khon-sham theorem, they can not determine the accurate kinetic

energy of electrons and all the electron-electron interraction (Vee potential term.

So in equation (3.34) Exc[n] is defined in such a way that there is the difference

between exact kinetic energy of electrons and approximate (in non interacting refer-

ence frame) kinetic energy plus the difference between electron-electron interaction

term and classical Hartree term. Only we can calculate Tn] approximately and clas-

sical coulomb interaction and thus the exchange correlation energy has contained

difficulties till now.

The local density approximation (LDA) is the first effort to estimate the exchange-

correlation functional in DFT computations. The second well-known class of ap-

proximations to the Kohn-Sham exchange-correlation functional is the generalized

gradient approximation (GGA). In the GGA approximation, the local electron den-

sity and local gradient in the electron density are included in the exchange and

correlation energies [54].
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3.4.1 Local Density Approximation (LDA)

The local density approximation is the simplest approximation to the exchange-

correlation functional (LDA). The energy density of a homogeneous electron gas

with the same electron density n(r at every site in the molecule has the value that

would be supplied by a homogeneous electron gas with the same electron density

n(r at that point, according to the local density approximation. The term ”local”

was coined to distinguish the technique from those in which the functional is reliant

not only on r but also on the gradient (first derivative) of r, with the distinction

arising from the assumption that a derivative is a nonlocal characteristic.

When the density is slowly changing, the local approximation is only valid in a

theoretical sense. LDA delivers very good results even though atom and molecule

densities are often highly inhomogeneous. LDA has been found to produce relatively

satisfying findings for equilibrium structures, harmonic frequencies, and dipole mo-

ments in molecules [55].

The KS equations (3.36), (3.38) and (3.39) while exactly incorporating the kinetic

energy Ts[n], still leave the exchange-correlation functional Exc[n] of (3.33) unsettled.

An explicit form for Exc[n] is needed to specify the KS equations. The search

for an accurate Exc[n] has encountered tremendous difficulty and continues to be

the greatest challenge in the density-functional theory. We describe in this section

the simplest approximation, the local approximation proposed by Kohn and Sham

(1965).

The uniform-electron-gas formula was used locally to obtain the Thomas-Fermi func-

tional for kinetic energy and the Dirac functional for exchange energy. Now that

the kinetic energy Ts[n] is rigorously treated in the KS scheme, we can use the

uniform-electron-gas formula solely for the unknown part of the rest of the energy

functional. Thus we introduce the local-density approximation (LDA) for exchange

and correlation energy,

ELDA
xε [n] =

∫
n(r)εxc(n)dr (3.42)
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where εxε(n) indicates the exchange and correlation energy per particle of a uniform

electron gas of density n. The corresponding exchange correlation potential of (3.36)

then becomes

vLDA
xc (r) =

δELDA
xc

δn(r)
= εxc(n(r)) + n(r)

δεxc(n)

δn
(3.43)

and the KS orbital equations read

[
−1

2
∇2 + v(r) +

∫
n (r′)

|r− r′|
dr′ + vLDA

xc (r)

]
ψi = εiψi (3.44)

The self-consistent solution of (3.44) defines the Kohn-Sham localdensity approxi-

mation (KS-LDA), which in the literature is usually simply called the LDA method.

3.4.2 Generalized-Gradient Approximations

The LSDA neglects inhonogeneities of real charge density which could be deffer-

ent from the Homogeneous Electron Gas(HEG). The exchange correlation energy

density has significantly defferent result from HEG. This gives rise to the various

Generalized-Gradient Approximations (GGA) which include density gradient cor-

relation and higher spatial dertiviatives of electron density and gives better result

than LDA in many cases. Three most widely used GGA’S are the from propeosed

by Becke [56], Perdew et al. [57] and Perdew, Burke and Enzerhof [58]. From spin

polarized system [59] we know that:

ELSDA
XC [n↑(r), n↓(r)] =

∫
n(r) εhomXC (n↑(r), n↓(r)) dr (3.45)

Where XC energy density εhomXC (n(r)) is a function of the density alone and is de-

composed into exchange energy density εhomX (n(r)) and correlation energy density

εhom
C (n(r)). So that the XC energy functional is decomposed into exchange en-

ergy functional ELDA
X

[
n(r
)]

and correlation energy functional ELDA
C

[
n(r
)]

linearly.
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From density gradient ∇n(r),

EGGA
XC [n↑(r), n↓(r)] =

∫
n(r) εhomXC (n↑(r), n↓(r), |∇n↑(r)| , |∇n↓(r)| , . . .) dr

=

∫
n(r) εhomX n(r)

)
FXC (n↑(r), n↓(r), |∇n↑(r)| , |∇n↓(r)| , . . .) dr

(3.46)

Where FXC is dimensionless and εhomX n(r)
)

is the exchange energy density of the

unpolarized HEG. FXC can be decomposed linearly into exchange contribution Fc

as FXC = Fx + Fc. Generally GGA works better than LDA, in pridicting binding

energy of molecules and bond length, crystall lattice constants, especially the system

where charge density varried rapidly.

In case of ionic crystall, GGA overcorrects LDA results where the lattice constants

of LDA fit well than GGA. But in case of transition metal oxides and rare-earth

element, both LDA and GGA parform badly. This drawback leads to approximations

beyond LDA and GGA.

3.4.3 Local Spin Density Approximation (LSDA)

Spin DFT is important in the theory of atoms amd molecules with net spins, as well

as solids with magnetic order. The relevent example for our purpose is the Zeeman

term that is different Fermions with up and down spin. According to this model the

particle density,

n(r) = n(r, σ =↑) + n(r, σ =↓) (3.47)

and the spin density

s(r) = n(r, σ =↑)− n(r, σ =↓) (3.48)

This results the energy density as

E = EHK [n, s] ≡ E ′HK [n] (3.49)

Where [n] denotes the functionl of the density which depends both on space and

spin. In absance of external Zeeman fields, the soluton of lowest energy may be spin
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polarized. That is,

n(r, σ =↑) 6= n(r, σ =↓) (3.50)

which is anologous to the broken symmetry solution of unrestricted Hartree-Fock

theorem. The usefulness of spin Density Functional Theory is in these cases as well.

The original Hartree-Fock theorem are valid and the ground state is determined by

total ground state density n(r, σ =↑) + n(r, σ =↓) for the system where there is no

spin dependent external potential.

3.4.4 LDA+U Method

The systems which are strongly correlated contain rare-earth metal (transition metal)

having partially filled d or f shells. L(S)DA and GGA can not explain them properly.

In this method, electrons are considered into two classes: delocalized s, p electron

and localized d or f electrons. The total energy in L(S)DA+U [60] method is given

by,

ELDA+U
tot [ρσ(r), nσ] = ELSDA [ρσ(r)] + EU [nσ]− Edc [nσ] (3.51)

where, σ=spin indexes ρσ(r)=electron density for spin-σ electrons nσ= density ma-

trix of f or d electron for spin-σ electrons ELSDA [ρσ(r)]= standard LSDA energy

functional EU [nσ]electron-electron coulomb interaction energy . The last term is

double counting term which remove the average LDA energy contribution of d or f

electrons from the LDA energy

Edc [nσ] =
1

2
UN(N − 1)− 1

2
J [N↑(N↑ − 1) +N↓(N↓ − 1)] (3.52)

where, N = N↑ + N↓. U and J are coulomb and exchange parameters. If exchange

and non sphericity is neglected then,

ELDA+U
tot = ELDA +

1

2
U
∑
i 6=j

ninj −
1

2
UN(N − 1) (3.53)

The orbital energies εi are derivative of above equation with respect to orbital oc-
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cupations ni :

εi =
∂E

∂ni
= εLDA + U(

1

2
− ni) (3.54)

Forni = 1, LDA orbital energiesare shifted by −U
2

and by U
2

for unoccupied orbitals

(ni = 0), resulting the upper and lower Hubbard bands, which opens a gap at the

Fermi energy in transition metal oxides. In case of double counting term, it has

two different tretement: AMF and FLL. The former is most suitable for small U

system [61] and the letter for large U system [62]. The energies for double counting

is given by [63],

Edc
AMF =

1

2
UN2 − U + 2lJ

2l + 1

1

2

∑
σ

N2
σ (3.55)

and

Edc
AMF =

1

2
UN(N − 1)− 1

2
J
∑
σ

Nσ(Nσ−1) (3.56)

where,

N
2(2l+1)

=average occupation of the correlated orbitals, Nσ
2l+1

=average occupation of a

single spin of the correlated orbital

3.5 Problems and limitations of DFT

In summary, both the Hohenberg-Kohn formulation as well as the approach by

Kohn-Sham are formally exact and therefore allow in principle an exact solution

provided that the functional Exc [n(~r)] is exactly known. In practice this is never

the case, which reveals the crucial point in (ground state) density functional theory.

Every calculatory approach in DFT stands and falls with the quality of the approxi-

mation for the unknown functionals F [n(~r)] and Exc [n(~r)] [23,40]. As stated in the

introduction, possible approximations of the fuctional Exc[n(~r)] are not discussed in

this thesis but can be found in several literature sources [23,47,64,65].

There are also a few other points which have to be taken into consideration. In 3.1

about the electron density, the term v -representability has been introduced, accom-

panied by the fact that there do exist particle densities which do not correspond to

a potential v(~r) [23, 40].
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The same question for an antisymmetric N-body wave function ψ(~r1, ~r2, . . . , ~rN) can

also be asked. How can it be assured that a given density n(~r) corresponds to such

a wave function? Both of these questions are very important, because an energy

calculated from a “physically impossible density” would provide a useless solution

[23,47].

Nevertheless, the problem of N -representability has been solved and it has been

proofed that every nonnegative function can be written in the form (3.1) by

the use of some anti-symmetric wave function ψ(~r1, ~r2, . . . , ~rN) [66, 67]. The v-

representability problem on the other hand lacks of a solution.But instead of a

solution, it is referred to the proof which has been presented for the second HK-

theorem (Levy and Lieb) and the subsequent statement that a knowledge of v(~r)

and therefore v -representability of the density is not a a necessity [50,51,68].

Another problem arises as soon as information about excited states is required.

Recalling that the minimum of the functional Ev [n′(~r)] in (3.18) corresponds to

the ground state energy, it could be assumed that the other extrema of the functional

correspond to excited state densities as well, even if the variational principle is in

general only valid for the ground state. This is in fact the case, but on the other hand

not every excited state density corresponds to an extremum of the functional [29,

69]. Therefore, to obtain trustful information about the excited states of a system,

other methods have to be found. A variety of different methods [70–73] have been

investigated one of the most prominent among them is the so called time-dependent

DFT, [23,29,74] to which the final part of this thesis is assigned.

3.6 Basis functions

In practice, numerical solution of the KS differential equation (3.31) typically pro-

ceeds by expanding the KS orbitals in a suitable set of basis functions and solving

the resulting secular equation for the coefficients in this expansion and or for the

eigenvalues for which it has a solution. The construction of suitable basis functions

is a major enterprise within electronic-structure theory (with relevance far beyond
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DFT), and the following lines do little more than explaining some acronyms often

used in this field.

In physics much is known about the construction of basis functions for solids due to

decades of experience with band-structure calculations. This includes many calcu-

lations that predate the widespread use of DFT in physics. There is a fundamental

dichotomy between methods that work with fixed ba-sis functions that do not de-

pend on energy, and methods that employ energy- dependent basis functions. Fixed

basis functions are used e.g., in plane-wave expansions, tight-binding or LCAO (lin-

ear combination of atomic orbitals) approximations, or the OPW (orthogonalized

plane wave) method. Examples for methods using energy-dependent functions are

the APW (augmented plane wave) or KKR (Korringa-Kohn-Rostoker) approaches.

This distinction became less clear-cut with the introduction of ‘linear methods’ [75],

in which energy-dependent basis functions are linearized (Taylor expanded) around

some fixed reference energy. The most widely used methods for solving the Kohn-

Sham equation in solid-state physics, LMTO (linear muffin tin orbitals) and LAPW

(linear augmented plane waves), are of this latter type [76].

Development of better basis functions is an ongoing enterprise [77, 78]. The situa-

tion is quite similar in chemistry. Due to decades of experience with Hartree-Fock

and CI calculations much is known about the construction of basis functions that

are suitable for molecules. Almost all of this continues to hold in DFT — a fact that

has greatly contributed to the recent popularity of DFT in chemistry. Chemical ba-

sis functions are classified with respect to their behaviour as a function of the radial

coordinate into Slater type orbitals (STOs), which decay exponentially far from the

origin, and Gaussian type orbitals (GTOs), which have a gaussian behaviour. STOs

more closely resemble the true behaviour of atomic wave functions [in particular

the cusp condition of Kato’s theorem for Coulomb potentials] [79,80] but GTOs are

easier to handle numerically because the product of two GTOs located at different

atoms is another GTO located in between, whereas the product of two STOs is not

an STO. The so-called ‘contracted basis functions’, in which STO basis functions

are reexpanded in a small number of GTOs, represent a compromise between the
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accuracy of STOs and the convenience of GTOs. The most common methods for

solving the Kohn-Sham equations in quantum chemistry are of this type [64, 81].

Very accurate basis functions for chemical purposes have been constructed by Dun-

ning [82] and, more recently, by da Silva and collaborators [83, 84]. More details

on the development of suitable basis functions can be found, e.g., in these references

and Ref. [64]

A very popular approach to larger systems in DFT, in particular solids, is based

on the concept of a pseudopotential (PP). The idea behind the PP is that chemical

binding in molecules and solids is dominated by the outer (valence) electrons of each

atom. The inner (core) electrons retain, to a good approximation, an atomic-like

configuration, and their orbitals do not change much if the atom is put in a different

environment. Hence, it is possible to approximately account for the core electrons

in a solid or a large molecule by means of an atomic calculation, leaving only the

valence density to be determined self-consistently for the system of interest.

In the original Kohn-Sham equation the effective potential vs[n] = vext+ vH [n] +

vxc[n] is determined by the full electronic density n(r), and the selfconsistent solu-

tions are single-particle orbitals reproducing this density. In the PP approach the

Hartree and xc terms in vs[n] are evaluated only for the valence density nv, and

the core electrons are accounted for by replacing the external potential vext by a

pseudopotential vPPext . Hence vPPs [nv] = vPPext + vH [nv] + vxc [nv]
43 The PP vPPext is

determined in two steps. First, one determines, in an auxiliary atomic calculation,

an effective PP, vPPs , such that for a suitably chosen atomic reference configuration

the single-particle orbitals resulting from vPPs agree - outside a cut-off radius rc sepa-

rating the core from the valence region - with the valence orbitals obtained from the

all-electron KS equation for the same atom. As a consequence, the valence densities

natv obtained from the atomic KS and the atomic PP equation are the same. Next,

one subtracts the atomic valence contributions vH [natv ] and vxc bnatv c from vPPs bnatv c

to obtain the external PP vPPext which is then used in the molecular or solid-state

calculation, together with vH [nv] and vxc[nv] taken at the proper valence densities

for these systems.
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The way vs
PP is generated from the atomic calculation is not unique. Common

pseudopotentials are generated following the prescription of, e.g. Bachelet, Hamann

and Schlüter [85], Kleinman and Bylander [86], Vanderbilt [87] or Troullier and

Martins [88]. Useful reviews are Refs. [89–91]. The pseudopotential approach

is very convenient because it reduces the number of electrons treated explicitly,

making it possible to perform density-functional calculations on systems with tens

of thousands of electrons. Moreover, the PP pseudopotentials vext
PP are much

smoother than the bare nuclear potentials vext. The remaining valence electrons are

thus well described by plane-wave basis sets.

Some of the choices one has to make in a practical Kohn-Sham calculation are

illustrated schematically in the equation below.

[
−∇

2

2m
+ vext(r) + vH(r) + vxc(r)

]
φn(r) = Enφn(r)

The first term −∇2

2m
→ in bracket is; non relativistic:Schrodinger, scalar relativistic

relativistic:Dirac. Second term vext(r) → is nuclei,pseudopotential. Third term

vH(r) → is poisson eq, integral. Fourth term vxc(r) → is L(S)DA, GGA, hybrids,

MGGA. φn(r) → is for mesh/basis, GTO/STO/.., LMTO/LAPW/PW/..and the

Eigen value is En → is Lagrange multipliers, Band structure.
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Chapter 4

Computational details

In this thesis the structural properties, volume optimization, electronic properties

(band structure, density of states), magnetic, optical and mechanical properties

have been determined using the self-consistent full potential linearized augmented

plane wave (FP-LAPW) [92] method as implemented in WIEN2k [93] code within

the density functional theory (DFT) [94]. We have optimized the structure of

Cu2TiSi, Cu2ZrGe, Ru2TiSi, Ru2VSi, Rh2TiSi and Rh2VSi through energy mini-

mization where we calculate the lattice parameters for each compound respectively.

These values of lattice parameter have been fixed so that the further calculations

can be carried out with the use of these values. The energy convergence criterion

was set to 10−5 Ry. In the FP-LAPW method [95], the unit cell is divided into

two parts: non-overlapping atomic spheres centered at the atomic sites and the

interstitial region. The Perdew–Burke Ernzerhof generalized gradient approxima-

tion (GGA) had been utilized for the exchange and correlation potential energy in

Kohn-Sham equation.

we set RKmax = 8.5 for all calculation and the convergence of the basis set was

controlled by the cut-off parameter -6 Ry(Rydberg). The RMT is the smallest of the

MT (muffin-tin) sphere radius and Kmax is the largest reciprocal lattice vector used

in the plane wave expansion. The charge density and the potential in the interstitial
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region had been expanded as a Fourier series with the largest wave vectors up to

Gmax = 12. The maximum value of angular momentum lmax = 6 is selected for

the wave function elongation inside the atomic sphere. The cutoff energy, which

defines the separation of valence and core states, was chosen as -6 Ry. The charge

convergence is selected as 0.0001 e and energy convergence 0.00001 Ry(Rydberg)

during self-consistency cycles. Number of k-points in the brillouin zone 1000 for

SCF, Band structure and mechanical calculation and 5000 for both DOS and optical

properties calculation. Emax is selected as 3.0 electron volt for the optical property

calculations. The effect of spin–orbit coupling is neglected.

The material behavior under zero pressure is defined by calculating elastic constants.

All these constants have the effective significant indication of mechanical properties,

structural stability, bond indexes of solids and anisotropy. On aspects of the sym-

metry of cubic lattice, the elastic constants reduce to three independent constants,

as like C11, C12 and C44 have been calculated by IRelast package. The .struct and

.outputeos files have been kept in a directory and applied the command for calculat-

ing elastic constant. Conventionally the stability conditions of the elastic constants

for cubic crystal are C11−C12 > 0, C11 > 0, C44 > 0, C11 +2C12 > 0, C12 > B > C11

[96–98] and the elastic anisotropy factor, ‘A’ that gives vital particularities on struc-

tural stability is obtained from [96,99]

A =
2C44

C11 − C12

Regarding full isotropic materials, ‘A’ is equal to one. That makes deviation from

the anisotropy of crystal. In spite of having the significance that elastic constants

are calculated by the first principle study of mono-crystals, the abundance received

tremendous interest. Usually, PBE-GGA potential is used for the calculation that

the bulk modulus B and the shear modulus G have made as follows

G =
(GV +GR)

2
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and

B = BV = BR =
C11 + C12

3

Here,

GV =
(C11 − C12 + 3C44)

5
and GR =

5C44 (C11 − C12)

[4C44 + 3 (C11 − C12)]

and anisotrophy constant can be defined by [100,101]

AG =
(GV −GR)

(GV +GR)

When GV = GR, the AG= 0, which impiles the full isotropy, since AG obtains from

zero, we get higher anisotropy. In the elastic part, stress to strain ratio, young’s

modulus E, indicates the stiffness of material that is obtained from

E =
9BG

(3B +G)

When E increases, the crystal becomes stiffer and more covalent. The ductility

index proposed by Pugh, B
G

for soft materials, the value would be greater than 1.75.

The Poisson’s ratio v > 0.26 for materials act like as ductile fashion and otherwise

brittle fashion. For perfectly elastic isotropic regions and perfectly incompressible

material takes the v values 0.25, 0.5 correspondingly.
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Chapter 5

Investigation of Cu2TiSi and

Cu2ZrGe

5.1 Structural properties

The structure of Cu2TiSi and Cu2ZrGe are the full-heusler alloys are shown in

Figure 5.1. For the Copper based heusler alloys the four FCC latices are inserted

into each other. The space group is (225, Fm3̄m), for that structure. The Figure 5.2

shows the Calculated total energy of Cu2TiSi and Cu2ZrGe compounds as functions

of the unit cell volume.

The Cu atom has two positions one at X1(1/4, 1/4, 1/4) and another is far from the

first position at X2(3/4, 3/4, 3/4). The Titanium and Zirconium position at Y(1/2,

1/2, 1/2) and the Silicon and Germanium positions are at Z(0, 0, 0). Graphically,

the lattice constants can also be obtained from the energy vs volume diagram with

the help of the equation ao = 3
√

4V × (0.529)(Å). Where V is equilibrium volume

and the equilibrium lattice parameter ao. The optimized Volume is clearly indicated

in the Energy vs Volume curve. It is evident that the minimization of energy is held

at the lowest point of Figure 5.2, where the equilibrium lattice parameter is also
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Figure 5.1: Structure of Cu2TiSi and Cu2ZrGe
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Figure 5.2: Volume optimization of Cu2TiSi and Cu2ZrGe

extracted.

5.2 Elastic properties

After having the structure file and energy minimization, the elastic constants C11,

C12 and C44 give the prediction of the mechanical and molecular behavior properties

of these systems. The isotropic and anisotropic scheme of copper-based full heusler

alloys can be seen from elastic anisotropy factor A, anisotropy percentage AG. Also

Cauchy’s Pressure, Young’s modulus E, ductility modulus G, Poisson’s ratio v, B/G

ratio and bulk modulus B has been calculated in Table 5.1.

Cu2TiSi has B/G ratio of 3.776 which means a high ratio of bulk and shear modulus
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Table 5.1: Lattice constants a0, Band gap, The obtained value of Fermi energy Ef , the

calculated elastic constants C11, C12 and C44, the bulk modulus (B), the elastic anisotropy

factor (A), the percentage of anisotropy AG, Cauchy’s Pressure, Young’s modulus (E),

the shear modulus (G), B/G ratio and Poisson’s ratio v of Cu2TiSi and Cu2ZrGe

Specification Cu2TiSi Cu2ZrGe

a0(Å) 5.9633 6.2891

Band gap (ev) 0.0 0.0

Fermi energy(eV) 0.7021580886 0.6859454548

C11(GPa) 173.5554 95.0609

C12(GPa) 166.7748 115.4802

C44(GPa) 84.5710 32.1863

B(GPa) 113.4434 70.18

A 24.945 −3.153

AG 0.734 −1.910

Cauchy’s Pressure 82.204 83.294

E(GPa) 82.828 −54.529

G(GPa) 30.047 −16.732

B/G 3.776 −4.194

v 0.378 0.629

indicate the metal has good mechanical strength and ductile behavior [102] from the

elastic limit under applied load on it. It also evident that the materials capable of

plastically deform able. So this material can be used for engineering purposes.

Whereas (B/G) ratio of -4.194 for Cu2ZrGe indicates more fragile nature [103,104].

The Poisson’s ratio v of Cu2TiSi and Cu2ZrGe is 0.378, 0.629 respectively where

the poisson’s ratio v > 0.26 that first one is elastically deform able and the second

one has high plasticity as the larger the Poisson’s ratio (v > 0.5), the better the

plasticity. Above the critical value 0.26 the materials is ductile. The cubic lattice

conditions C11−C12 > 0, C12 < B < C11 has not satisfied by Cu2ZrGe system which

implies the mechanically unstable structure due to it’s molecular behavior in this

alloy. For Cu2TiSi all conditions C11−C12 > 0, C11 > 0, C44 > 0, C11+2C12 > 0 and
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C12 < B < C11 [96–98] are satisfied which indicate elastically stable material. The

value of Anisotropy constant for Cu2TiSi and Cu2ZrGe system is 24.945, -3.153 is

largly deviate from 1. AG is 0.734, -1.910 correspondingly for the systems that shows

the anisotropy. The softness behavior can be seen by Cauchy’s pressure greater than

zero and B/G > 0. The desired Poisson’s ratio (-1 to +0.5) is satisfied with the

positive value of Young’s modulus (E), Bulk modulus (B), and shear modulus (G)

for Cu2TiSi better than Cu2ZrGe where Young’s modulus and shear modulus is

negative for this system.

5.3 Electronic Properties

From the Figure 5.3 (a) it is pointed out that the band is overlapped in the Fermi

level. So the band gap is 0 eV and shows metallic nature. In Figure 5.3(b) at the

Fermi level, the band overlapping [105],
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Figure 5.3: The band structures along the high symmetry directions in the Brillouin

zone of (a) Cu2TiSi and (b) Cu2ZrGe at their predicted equilibrium lattice constants.

bands crossing [106], intraband transition are occurred. For the two system, the 3d

orbital contribution of copper in the band structure is more than the other atoms
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orbital contain in the system [107]. The low energy region is due to the s orbital of

Si and Ge atoms for the alloys [6, 108]. The first energy region below Fermi level

mainly consists of the occupied 3d states of Cu with small contribution of 3d states

of Ti atoms.

From the band structure of this two system, the gap between the valence band and

conduction band is 0 eV. As there is no valence band maximum and conduction

band minimum. Moreover, in both spin channel the band overlapped shows the two

system is metallic in nature.

For understanding the density of states from the Figure 5.4 (a), there is well defined

doss at the Fermi level for majority spin channel and minority spin channel of

Cu2TiSi. With the increasing of energy at 0.5 eV the corresponding DOS peaks at

3 eV, 2.5 eV, 0.8 eV, 0.1 eV of Cu2TiSi, Ti, Cu and silicon Total DOS for both spin

channel. However at point 0 eV in the Fermi level each atomic DOS curve has a

definite value which shows the metallic behavior at the both spin channel. In the

positive energy region after the energy 2 eV the DOS curve are flat like nature for

filled 3d orbital of Copper. Then for Cu and Ti atom they are individually metallic

nature from the partial density of state except silicon. The Total DOS of this system

is higher than individual atomic DOS contribution in the energy interval -7.3 eV to

6.8 eV. So the Cu2TiSi is metallic nature. The electron transport properties depend

on the DOS near the Fermi level.

As It has DOS in the Fermi level for both up spin and down spin channel the band

gap is zero. The significant symmetric DOS and PDOS curve for up spin and down

spin channel accounts for zero magnetic moment of the mettalic system.

For the PDOS of Cu atom Figure 5.4 (b) and 5.4 (f) regarding Cu2TiSi and Cu2ZrGe,

there has the difference of PDOS in lower energy region -4 eV. But at higher energy

region there has no significant differences above the Fermi level. The Titanium atom

has more available states above 0 eV which shows good conductor as the 3d orbital

is partially filled [109] in the high energy region. So the available free electron is

low. Also, as the upper shell s electron-orbital is filled by electron. Similarly for the

Si and Ge, Figure 5.4 (d) and 5.4 (h) after 0 eV, the occupied electrons states is
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Figure 5.4: Total Density and partial density of states (a, h) of spin polarized Cu2TiSi

and Cu2ZrGe system

high for Germanium and the electrons are tidily bonded in the Si and Ge, as a result

for the conduction of electron is occurred at high energy region, that causes heat

up the silicon and germanium semiconductor [110]. Moreover the total magnetic

moment of Cu2TiSi and Cu2ZrGe is zero which shows antiferromagnetic nature, so
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the net magnetization of these compounds are zero [111] for application of external

magnetic field. The antiferromagnetic nature shows that the two system is metallic.

5.4 Optical Properties

The optical property of Cu2TiSi and Cu2ZrGe has also been calculated. For in-

stance the Optical conductivity (σ(ω)), Electron energy loss function (L(ω)), Re-

fractive index (n(ω)), Absorption coefficient(I(ω)), Complex dielectric tensor εij(ω),

Extinction coefficient (K(ω)), Optical reflectivity (ρ(ω)), Real dielectric tensor ε′ij,

Imaginary dielectric tensor ε′′ij [112,113] are investigated With the help of FP-LAPW

method and generalized gradient approximation (GGA).

The dielectric tensor is considered as real dielectric tensor and imaginary dielec-

tric tensor. It is introduced as a significant characteristics of a specific crystallo-

graphic medium. The tensor component for face centered cubic crystal Cu2TiSi and

Cu2ZrGe have illustrated in the Figure 5.5 (c) and Figure 5.5 (d) are shown real

dielectric tensor and imaginary dielectric tensor respectively.

In Figure 5.5 (c) indicates the real part of εij(ω), (Reεij(ω)) for both Cu2TiSi and

Cu2ZrGe compounds. The static part of die-electric tensor goes to infinity for both

of them; and Steep slope this implies two important facts: Firstly, both crystal

have shows metallic behavior in this energy range 0 to 1 eV denotes the loss of

light transit for both compounds. So Cu2TiSi in IR region has high storage energy

for polarization of charge. As the Cu2ZrGe curve is not so high as Cu2TiSi, so the

Cu2TiSi is seen clearly more responsive than Cu2ZrGe. It is seen that (Reεij(ω)) has

roots 0.6 eV and 1.2 eV for Cu2TiSi, Cu2ZrGe and the curves go down at 3.70 eV,

4.30 eV respectively. Where (Reεij(ω))=0. At 0 value of real dielectric tensor, the

compounds do not any effect to incident light, which this fact is mainly due to the

plasmon oscillations. In contrast with the Figure 5.5 (e) (electron energy loss) one

can declare that there is a pick arisen at point 1.4 eV and 1.9 eV. High polarization

response occurred in infrared spectrum limit 1.77 eV to visible spectrum 3.7 eV for

both compounds. For the values greater than 4.3 eV the (Reεij(ω)) is negative for
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Figure 5.5: Absorption coefficient (I(ω)), Optical conductivity (σ(ω)), the real and

imaginary part of dielectric tensor; εij(ω), Electron energy loss function (L(ω)), Optical

reflectivity (ρ(ω)), Refractive index and Extinction coefficient for Cu2TiSi and Cu2ZrGe

compounds.

both compounds; after that these element would be opaque. The peak in electron

energy loss right after 4.8 eV is the evidence of opaqueness of the compounds as
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real dielectric tensor is negative value. As the dielectric constant is infinity for

metal [114], so the electric field does not exist inside the conductor as it resist to

formation of electric field [115]. Since the ability of a metal to store energy compared

to those with low dielectric constants materials. In this case electric field permittivity

is larger than dielectric materials [116]. As the permittivity is high [117], then tensor

has sharp peak in the low energy infrared region, after this it remains constant with

the increasing photon energy. This shows the metallic behavior of the compound.

In Figure 5.5 (d) shows the Imεij(ω) curves for both compounds. Each curve implies

the electron energy loss when electron pass through occupied level to unoccupied

one. Electron moves largely in the infra-red domain (energies less than 0.6 eV)

that exhibits the metal char-acteristic of these compounds. When the photon is

incident on the compound, the electrons are transmitted in intra-band. But in the

value of energy 1.5 eV, one sees the sudden decrease of Imεij(ω) curves for both

compounds which is the result of plasmon oscillation. As the response of passages

occurred at large region (1.5 eV) it has the property of metals. The curve shows

the electron energy loss. In high energy region electron transition is stopped, in

this energy range. Figure 5.5 (a) shows the absorption curve of both compounds.

Since the absorption of materials are depend on the energy of the incident photon.

Initially in Low incident photon energy the absorption is ascending. The absorption

curve which enhance almost linearly in the beginning (Infrared Region). In the

visible region, one observes fast ascending of the absorption curve that maximizes

in 3.10 eV energy region. The main part of absorbed light in the infrared and visible

spectrum which help to electron transition.

Next to the real part of refractive index depicted in Figure 5.5 (g). It is clear

that in the low energy limit, the curve tends to the large value. Which is metallic

behavior. The decreasing of, extinction coefficient, (K(ω)) in the high energy region

denote the super-luminescence phenomenon. At the end, the reflectivity is shown in

the Figure 5.5 (f) the static reflection index is high for denser medium. In optical

reflectivity curve drop sharply from infrared region 1.77 eV to ultraviolet region

because of inter band transitions [112, 118]. Which also the properties of metals.
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It is comparable that for all diagrams in the infrared, visible and UV regimes, the

Cu2TiSi response to incident photons is higher than Cu2ZrGe. This property of

Cu2TiSi origins from the electronic configuration.

To describe the refractive index of these typical metal compound, there is always two

part; Real part of refractive index and the imaginary part of refractive index, which

is so called the extinction coefficient. However the refractive index is related to

the relative permittivity. So the refractive index is the square root of the dielectric

constant n(ω) =
√
εr. The complex relation between real and imaginary part of

the refractive index is nl(ω, s) = n + ix. Or n(ω) = n + k(ω). However, s is the

direction for index measurements. The optical conductivity has the highest value in

the infrared region. With the increase of energy it is shown in the graph that at 1.7

eV for Cu2TiSi reflectivity reaches slightly lower than Cu2ZrGe. The lowest value

of index occurred because of high energy photon rather than infrared region and

here the absorption increases rapidly and also the refractive index decreases. As the

absorption increasing with the increasing value of photon, the energy loss curve also

increases. That is why the metal heated and the metal goes to slightly pass in the

higher energy region.
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Chapter 6

Characteristics of Ru2TiSi and

Ru2VSi

6.1 Structural properties:

The total energy is calculated as a function of lattice constant for spin polarization

calculations. The structure Figure 6.1 for this compounds where four FCC sub lat-

ices are inserted each other, space group (225, Fm3̄m), is stable for spin polarization

calculations. The Calculated total energy curve of Ru2TiSi and Ru2VSi compounds

are given in Figure 6.2 as a function of the unit cell volume.

The Ru atom has two positions one at X1(1/4, 1/4, 1/4) and another is far from

the first position at X2(3/4, 3/4, 3/4). The Titanium and Vanadium position at

Y(1/2, 1/2, 1/2) and the Silicon position are at Z(0, 0, 0) Figure 6.1. Graphically,

the lattice constants can be obtained from the E-V, energy vs volume diagram with

the help of equation ao = 3
√

4V × (0.529)(Å). Where V is the equilibrium volume.

The equilibrium lattice parameter ao is extracted from volume optimized minimum

energy curve of Ru2TiSi and Ru2VSi. The optimized Volume is observed from the

Energy vs Volume curve. It is evident that the minimization of energy is held at the
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Figure 6.1: Structure of Ru2TiSi and Ru2VSi
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Figure 6.2: Volume optimization of Ru2TiSi and Ru2VSi

lowest point of the Figure 6.2, where the equilibrium lattice parameter is extracted.

6.2 Elastic properties

After energy minimization and by the software IRelast package, we have calculated

elastic constants C11, C12 and C44 that give connection between the mechanical

and the dynamical properties of solids. In addition elastic anisotropy factor A,

anisotropy percentage AG, Cauchy’s pressure, Young’s modulus E, ductility modulus

G, Poisson’s ratio v, B/G ratio and bulk modulus (B) are calculated and listed in

Table 6.1

The two compounds satisfy the cubic lattice conditions C11 − C12 > 0, C11 > 0,
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C44 > 0, C11 + 2C12 > 0 and C12 < B < C11 [96–98]. That is the indication of

the mechanical stability of the two material. Elastic anisotropy factor for Ru2TiSi

and Ru2VSi has deflected from 1 as 0.772 and 0.935. So Ru2VSi is nearly perfectly

isotropic materials. As the value of AG is 0.008 and 0.0005 that implies the two

system is isotropic. From Poisson’s ratio v is 0.214, 0.244 for Ru2TiSi and Ru2VSi

respectively that indicate Ru2VSi is elastic up to the elastic limit. These materi-

als has brittle nature as the poisson’s ratio v < 0.26. The ratio B/G <1.75 for

Ru2TiSi and Ru2VSi that’s why these materials are brittle nature [103, 104]. For

both compounds obey Cauchy’s pressure greater than zero and B/G > 0 which

indicate metallic bonding [119].

Table 6.1: Lattice constnats a0, Band gap, Fermi energy Ef , the estimated elastic con-

stants C11, C12 and C44, the bulk modulus (B), the elastic anisotropy factor (A), the

percentage of anisotropy AG, Cauchy’s pressure, Young’s modulus (E), the shear modulus

(G), B/G ratio and Poisson’s ratio v for Ru2TiSi and Ru2VSi

Specification Ru2TiSi Ru2VSi

a0 6.0065 5.9455

Band gap (ev) 0.0 0.0

Fermi energy(eV) 0.9400172065 0.9643782562

C11(GPa) 447.2505 402.0528

C12(GPa) 129.6341 160.6862

C44(GPa) 122.6498 112.8782

B(GPa) 192.295 187.5796

A 0.772 0.935

AG 0.008 0.0005

Cauchy’s pressure 6.984 47.808

E(GPa) 330.215 288.397

G(GPa) 136.026 115.938

B/G 1.414 1.618

v 0.214 0.244
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6.3 Electronic properties

The electronic band structure of Ru2TiSi Figure 6.3(a) and Figure 6.3(b) for up

spin and down spin channel are semiconducting behavior. It is noticed that the

band is not overlap between conduction band and valence band in the Fermi level

for both spin channel in the Figure 6.3 (a) and b. So both of the up spin and

down spin channel is semiconductor nature [120] type as there is a direct band gap

and the indirect band gap is 0 eV. In up spin channel Figure 6.3(c) at least one

conduction band hybridized with the valence band across the Fermi level absolutely

which has been observed the nature of metallic behavior and down spin channel

Figure 6.3(d) where conduction band minimum crosses the Fermi level for Ru2VSi

as there is a direct band gap and zero value of indirect band gap between the valence

band maximum and conduction band minimum. So Ru2VSi has semiconducting

property [121, 122] property in the down spin channel. The energy bands ranging

from -4 to -1 eV and 0 to +3 eV in both alloys are assigned to the strong hybridization

of Ru, Ti and V d orbital with s and p orbital of Silicon. The d orbital contribution

in the band structure at the Fermi level is more than the other atoms orbital contain

in the system. The width of the energy gap can be calculated using the energies of

the highest occupied band at the γ point and the lowest unoccupied band at the X

point [123].

The contribution of density of states Figure 6.4 (a) at the Fermi level is low in both

majority spin channel and minority spin channel of Ru2TiSi. With the increasing

of eV at 0.4 eV the corresponding DOS peaks of 4.4 eV for Ru2TiSi Total DOS and

2.5 eV, 2.1 eV, 0.1 eV for Ti, Ru and silicon atomic DOS for up spin and down spin

channel. At Fermi level each atomic DOS curve has a negligible value for up spin

and down spin channel which shows antiferromagnetic semiconductor type [124].

The significant symmetric DOS curve for up spin and down spin channel in the Fermi

level implies the zero magnetic moment of the Ru2TiSi. The magnetic moment of

Ru2TiSi is low for all atom and the total magnetic moment is zero which shows

antiferromagnetic nature. The total DOS contribution of Ru2VSi Figure6.4(e) for

up spin is high and down spin is low corresponding Ru2VSi Total DOS and atomic
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Figure 6.3: Spin-polarized band structures along the high symmetry directions in the

Brillouin zone of (a, b) Ru2TiSi and (c, d) Ru2VSi at their predicted equilibrium lattice

constants for the up and down spin.

DOS of Ru, V and silicon atom in the Fermi level Figure 6.4 (e), (f), (g) and (h).

It is observed that there is unsymmetrical distributions of DOS figure 6.4 on both

spin channels indicating magnetic characteristics. As the contribution of density of

states in the majority spin channel is high and significantly low in the down spin

channel so these compound is not completely spin polarized. The spin polarization
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Figure 6.4: Total Density and partial density of states (a, h) of spin polarized Ru2TiSi

and Ru2VSi system

(p) at Fermi energy (Ef) of a material [125] is defined by equation as follows

p =
N ↑ (Ef)− ↓ N(Ef)

N ↑ (Ef) + N ↓ (Ef)
(6.1)
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where N ↑ (Ef) and N ↓ (Ef) are the spin-dependent den-sity of states at Ef and ↑

and ↓ represent the majority and minority states, respectively. Whereas the value of

(P) < 1 for these material, therefore these material is not completely spin polarized.

But for true half-metal P=1, therefore 100% spin polarization. As the asymmetry

of DOS that for up spin channel is maximum and down spin channel is minimum.

This character is dominated by vanadium [126].

6.3.1 Magnetic moment

The magnet moment for Ru2TiSi is zero that shows antiferromagnetic nature and

the corresponding contribution of density of states in the Fermi level is very low.

The magnetic moment of vanadium is 0.91477 Table 6.2 then the up spin channel

changed with higher density of states with asymmetry Figure 6.4 (e). As the DOS is

asymmetric nature in Fermi level for Ru2VSi the net magnetization is not zero [127,

128]. The total magnetic moment 0.96991 for Ru2VSi which shows ferromagnetic

nature. This magnetic moment mainly originate from the d orbital hybridized with

p orbital. The valence electron of Ru, Ti, V and Si is 8, 4, 5 and 4 respectively.

The full heusler alloys, the total magnetic moment illustrated with the formula

Mt = Zt − 24. In the case of half-heusler alloys the total magnetic moment is

described with the formula Mt = Zt − 18 (Slater Pauling rule). Where Mt is the

total magnetic moment. Zt is the total number of valence electron in the unit cell. In

conventional antiferromagnets, the electronic band structures and DOS are identical

for both spin channel [124]. We see that Ru2TiSi there is no spin-polarization,

while in the half-metallic antiferromagnet, the electronic structures are completely

asymmetric, resulting in 100% spin-polarization [129–131]. The valence electron of

the two system and experimental value from the table shows that they don’t obey

the Slater Pauling rule [132,133].
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Table 6.2: Magnetic Moment for the corresponding systems (Ru2TiSi, Ru2VSi) atoms

System Magnetic moment (µB)

Sphere− 1 Sphere− 2 Sphere− 3 Interstitial Total

Ru2VSi −0.02879 0.91477 0.00217 0.11054 0.96991

6.4 Optical properties

The complex dielectric tensor relation is [134]

εij(ω) = ε′ij(ω) + ε′′ij(ω) (6.2)

ε′ij is the real part of complex dielectric tensor about polarization, dispersion, store

energy and release energy of electromagnetic wave. ε′′ij is the imaginary part of

complex dielectric tensor εij(ω) which is associated with absorbed energy when

electromagnetic wave penetrate into the compounds. In real dielectric tensor the

store energy is high Figure 6.5 (c) at IR to visible range. So in this region the

refractive index has been the highest value.

The imaginary part of dielectric tensor gives a high peak at visible spectrum (1.77-3.1

eV) after this it decreases in Ultraviolet region at 10 eV for both alloys Figure 6.5(d).

This means the visible spectrum is absorbed in the compounds and extinction co-

efficient 6.5 (h) is also high in visible spectrum as the visible light gets weaker and

absorbed. The complex refractive index of these metal is real part of refractive index

(n(ω)) and another is the imaginary part of refractive index, which is so called the

extinction coefficient. However the refractive index is related to the relative permit-

tivity n(ω) = n + k(ω). The refractive index is vital importance in refractometer,

solar cells, photonic crystal and telescope. In the Figure 6.5 (g) the energy range

0.3 eV, the real part of refraction index decreases drastically [122].

It has observed that, Real dielectric tensor (Reεij(ω)) has roots at 0.4 eV for Ru2VSi

and the curves goes down at point 3.5 eV and 3.8 eV for Ru2VSi, Ru2TiSi respec-

tively. Where (Reεij(ω))=0. At 0 value of real dielectric tensor, these compound

Figure 6.5(c) does not respond to incident light, which is mainly due to the plasmon
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Figure 6.5: Absorption coefficient (I(ω)), Optical conductivity (σ(ω)), the real and

imaginary part of dielectric tensor εij(ω), Electron energy loss function (L(ω)), Optical

reflectivity (ρ(ω)), Refractive index, Extinction coefficient for Ru2TiSi and Ru2VSi com-

pounds.

oscillations [135]. For the values greater than 3.8 eV the (Reεij(ω)) is negative for

both compounds; thus the element would be opaque. The precise peak in Eloss
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right after 6 eV is the evidence of opaqueness of the compounds Figure 6.5 (e). The

polarization of electron also changed at high energy region.

The Imaginary dielectric tensor Imεij(ω) curves for the two alloys Figure 6.5(d)

indicates the passage of electron from an occupied level to an unoccupied level.

The absorption coefficient (I(ω)) Figure 6.5 (a) represent the absorbed light in the

infrared and visible region are rapidly high at 1 eV to 4 eV; the electron transition

here is also rapid. In the UV limit the absorption get saturated value. The optical

conductivity curve define the absorbed light spent to enhance the conductivity in

the high energy limit 6.5 (b).

Since there is a production of electron and hole pair then the conductivity increases.

The decreasing of extinction coefficient (K(ω)) in the ultra-violet region clarifies

the “super-luminescence” phe-nomenon. So the release and absorption of spectrum

is also high. In infrared spectrum the reflectivity decrease sharply for Ru2VSi. In

optical reflectivity (ρ(ω)) curve drop sharply and optical conductivity (σ(ω)) curve

arisen with sharp peak at point 10 eV because of inter band transitions 6.5 (b)

and 6.5 (f). The all diagrams in the infrared, visible and UV regimes the Ru2TiSi

response to incident photons is higher than Rh2VSi. The electron energy loss (L(ω))

at high energy region is high as the crystal is excited and heat up. After 12.5 eV

the electron energy loss curve decreases sharply.
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Chapter 7

Exploration of Rh2TiSi and

Rh2VSi

7.1 Structural properties

The Rhodium based heusler alloys space group (225, Fm3̄m), where the four FCC

sub lattices are inserted each other in Figure 7.1. The Figure 7.2 shows the Cal-

culated energy of Rh2TiSi and Rh2VSi compounds as a function of the unit cell

volume. The Rh atom has two positions one at X2(1/4, 1/4, 1/4) and another is far

from the first position at X2(3/4, 3/4, 3/4). The Titanium and Vanadium position

at Y(1/2, 1/2, 1/2) and the Silicon position are at Z(0, 0, 0).

The lattice constants are obtained from the Energy vs Volume diagram with the

help of equation ao = 3
√

4V × (0.529)(Å). Where V is equilibrium volume. It is

evident that the minimization of energy is held at the lowest point in the volume

optimized curve, where the equilibrium lattice parameter is also extracted. The

lattice parameter of the Rh2 TiSi and Rh2VSi system is 6.0897 Å and 6.0177 Å

respectively.
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Figure 7.1: Structure of Rh2TiSi and Rh2VSi
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Figure 7.2: Volume optimization of Rh2TiSi and Rh2VSi

7.2 Elastic properties

The calculated elastic constants C11, C12 and C44 that signifies about the mechanical

stability and the atomic behavior of these two system. we also calculated elastic

anisotropy factor A, anisotropy percent AG, Cauchy’s pressure, Young’s modulus

E, ductility modulus G, Poisson’s ratio v, B/G ratio and bulk modulus (B) (show

Table 7.1). Rh2TiSi and Rh2VSi do not satisfy the stable cubic lattice conditions

C11 − C12 > 0 and C12 < B < C11 except C11 > 0, C44 > 0, C11 + 2C12 > 0 [96]

therefore it indicates the mechanically unstable structure. Elastic anisotropy factor

for Rh2TiSi and Rh2VSi is -0.414, -1.282 respectively has deviated from unity that

indicate anisotropy of the materials. The percentage of anisotropy AG is -1.379, -
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0.951 correspondingly for the two system is highly anisotropic. For both compounds

Cauchy’s pressure greater than zero and B/G > 0 for metallic bonding [119]. It can

be noted that poisson’s ratio for Rh2VSi is negative that the material has high

energy absorber and gain resistance to fracture. Therefore Rh2TiSi material has

higher B/G ratio than the ductility condition B/G > 1.75 and it’s Poisson’s ratio v

> 0.26 so this material is ductile behavior. The Rh2VSi compound has B/G < 1.75

that is the exhibition of brittle nature [103,104].

Table 7.1: Lattice constnats a0, Band gap, Fermi energy Ef , the estimated elastic con-

stants is C11, C12, C44, the bulk modulus (B), Elastic anisotropy factor (A), the percentage

of anisotropy AG, Cauchy’s pressure, Young’s modulus (E), the shear modulus (G), B/G

ratio and Poisson’s ratio v for Rh2TiSi and Rh2vSi

Specification Rh2TiSi Rh2VSi

a0 6.0897 6.0177

Band gap (ev) 0.0 0.0

Fermi energy(eV) 0.8340274500 0.8712044174

C11(GPa) 23.3461 115.1180

C12(GPa) 263.5755 254.4935

C44(GPa) 49.6839 89.3178

B(GPa) 95.641 123.204

A −0.414 −1.282

AG −1.379 −0.951

Cauchy’s pressure 213.892 165.176

E(GPa) 123.472 650.335

G(GPa) 48.05 524.256

B/G 1.99 0.235

v 0.285 −0.379
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7.3 Electronic properties

The electronic band structure of Rh2TiSi for up spin and down spin channel are

given in 7.3 (a) and Figure 7.3 (b) respectively. It is pointed out that the band is

overlap
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Figure 7.3: Spin-polarized band structures along the high symmetry directions in the

Brillouin zone of (a, b) Rh2TiSi and (c, d) Rh2VSi at their predicted equilibrium lattice

constants for the up and down spin channel.
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Figure 7.4: Total Density and partial density of states (a, h) of spin polarized Rh2TiSi

and Rh2VSi system

in the Fermi level and the band intersection, intraband transition are occurred. So

both of the up spin and down spin channel is metallic nature. In this band structure

d orbital contribution is more than the other atoms orbital contain in the system
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at the Fermi level. As the band gap 0 eV between the valence band maximum and

conduction band minimum [136]. The bottom of the conduction band and the apex

of the valence band touches each other below the fermi level.

With the increasing of energy at 1.3 eV the corresponding DOS peaks value arisen

3.8, 2.3, 1 and 0.1 (States/eV) of Rh2TiSi total DOS and individual atomic DOS of

Ti, Rh and silicon for up spin and down spin channel Figure 7.4(a). However the

slightly asymmetric DOS behaviour in both spin channel shows the total magnetic

moment of Rh2TiSi has significant value.

The spin polarization (p) at Fermi energy (Ef) of a material is defined by equation

as follows

p =
N ↑ (Ef)− ↓ N(Ef)

N ↑ (Ef) + N ↓ (Ef)
(7.1)

where N ↑ (Ef) and N ↓ (Ef) are the spin-dependent density of states at Ef and

↑ and ↓ represent the majority and minority states respectively. When both spin

channel has different definite DOS value, there is no complete spin-polarization. As

we observed for the identical DOS of Rh2TiSi and asymmetric DOS of Rh2VSi for

both spin channel, the spin polarization of Rh2TiSi compound is close to zero. In

Fermi level Ef for full spin-polarization (P =100%) the DOS N ↑ Ef or N ↓ Ef is

equal to zero.

For the significant asymmetric DOS curve Figure 7.4 (f), (g) for both spin channels

in the Fermi level, there is a net magnetization. After having the major DOS

contribution in the Fermi level the above two systems is said to be metallic nature.

7.3.1 Magnetic moment

In the two system, it is evident that the magnetic moment has a variation given

in Table 7.2. For the Rh2TiSi the magnetic moment of is paramagnetic nature,

as the magnetic moment is low, positive value [137]. Moreover the total magnetic

moment of Rh2VSi is ferromagnetic nature since the total magnetic moment 2.52978

for unsymmetrical DOS at the Fermi level [138]. This magnetic moments mainly

originates from the d orbital of atoms. The valence electron of the two system and
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experimental value from the table for the two system shows that they don’t obey

the Slater Pauling rule, for the full heusler alloys formula Mt = Zt − 24. Since

theoretically the total number of valence electron in Rh2TiSi is 26 and the Mt value

is 2. The total number of valence electron in Rh2VSi is 27 and the Mt value is 3.

Table 7.2: Magnetic Moment for the corresponding systems (Rh2TiSi, Rh2VSi) atoms

System Magnetic moment (µB)

Sphere− 1 Sphere− 2 Sphere− 3 Interstitial Total

Rh2TiSi 0.13156 0.03951 0.01454 0.02476 0.34193

Rh2VSi 0.43437 1.45107 0.01627 0.19370 2.52978

7.4 Optical Properties

The optical property of Rh2TiSi and Rh2VSi has also been observed, for instance

the Optical conductivity (σ(ω)), Electron energy loss function (L(ω)), Refractive

index (n(ω)), Absorption coefficient(I(ω)), Complex dielectric tensor εij(ω) [139],

Extinction coefficient (K(ω)), Optical reflectivity (ρ(ω)), Real dielectric tensor ε′ij,

Imaginary dielectric tensor ε′′ij are investigated With the help of FP-LAPW method

and generalized gradient approximation (GGA).

The real part of εij(ω) is (Reεij(ω)) for both Rh2TiSi and Rh2VSi compounds in

Figure 7.5 (c). The fixed part of dielectric tensor arise to infinity which signifies the

facts [140]. Firstly, both compounds have shown metallic behavior, in the energy

range 0 to 0.6 eV denotes the loss of light in the crystal medium for both crystal

compounds. It is seen that (Reεij(ω)) has roots 0.3 eV and 0.6 eV for Rh2TiSi

and Rh2VSi respectively and the curves goes down at 3.80 eV, where (Reεij(ω))=0.

So for IR to visible energy region the absorption energy is high that is suitable for

using self capacitance. At 0 value of real dielectric tensor, these compound does not

respond to incident light, where the fact is mainly due to the plasmon oscillations

and energy absorption. Comparing with the Figure 7.5 (e) (electron energy loss) one
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Figure 7.5: Absorption coefficient (I(ω)), Optical conductivity (σ(ω)), the real and

imaginary part of dielectric tensor εij(ω), Electron energy loss function (L(ω)), Optical

reflectivity (ρ(ω)), Refractive index, Extinction coefficient for Rh2TiSi and Rh2VSi com-

pounds.

can deduced that there is a pick arisen at point 1.6 eV and the relative permittivity

is increasing from 1.6 eV. The fundamental positive response occurred in infrared
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spectrum 1.77 eV and visible (1.77-3.1 eV) spectrum for both compounds. That

means the polarization and store energy is increased Figure 7.5 (c) at visible region

indicate high refractive index Figure 7.5 (g). For the values larger than 3.8 eV the

(Reεij(ω)) is negative for both alloys; thus the crystal would be opaque. The intense

peak in Eloss after 3.8 eV is the sign of opaqueness of the crystals.

Low energy state of incident photon, the electrons are transmitted in intra-band

region shows Imεij(ω) curves Figure 7.5 (d). But in the value of energy 1.4 eV,

one observe the rapid decrease of Imεij(ω) curves for both compounds which again

indicates the plasmon oscillation. As the response of passages of electron occurred

at at large region (1.4 eV) it has the property of metals. Moreover at high energy

region the electron get scattered by atom so the electron energy loss is high in

Figure 7.5 (e). With the increasing the energy of incident photons, the electron

transition in visible spectrum range is significantly increased for both compounds,

so that the electron transition peak of 3.5 eV and 3.8 eV for Rh2TiSi and Rh2VSi

respectively is observed. Below IR region and at visible region Imεij(ω) is high that

shows the large wave and visible light gets attenuated during passing through it.

So the extinction coefficient below 1.77 eV spectrum is high and absorbed energy is

high at visible light.

In the visible range related to Imεij(ω) and (Reεij(ω)) curves, the Rh2TiSi response

to incident photons is higher than Rh2VSi alloy. As incident photon frequency higher

at UV region (9.3 eV), there are another peaks arisen for both compounds. But for

further stimulation, the amplitude of peaks reduces and stopped electron transition

in this energy range.

Next to the real part of refraction index [141] are clarified in Figure 7.5 (g). In

the low energy limit, the curve goes to the large value for compact atomic medium.

The reflectivity is shown in the Figure 7.5 (f) with proper attention the refractive

index is high for both strong metallic properties of these compounds. And decreases

for plasmon oscillation. In optical reflectivity curve drop instantly from infrared

region 1.77 eV to ultraviolet region because of inter band transitions. Which also

the properties of metals. The refractive index of metal compound has real part
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of refractive index and the imaginary part of refractive index, which is so called

the extinction coefficient mainly the loss of electromagnetic wave in medium. The

optical conductivity has the highest value at visible region 7.5 (b). The lowest

value of refractive index occurred because of high energy spectrum rather than

visible region and here the absorption increases rapidly and also the refractive index

decreases.
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Chapter 8

Conclusion

We calculated the structural, elastic, electronic, optical and magnetic properties of

Copper based Cu2TiSi and Cu2ZrGe, Ruthenium based Ru2TiSi and Ru2VSi and

Rhodium based Rh2TiSi and Rh2VSi full heusler alloys by computer simulations

with generalized gradient approximation for exchange correlation functions. The

FP-LAPW method by PBE-GGA approximation is used for ferromagnetic calcula-

tion to find the minimum or ground state energy for the compounds. From these

result it is clear that the Cu2TiSi and Cu2ZrGe are antiferromagnetic in nature and

significant DOS near the Fermi level clarifies the metallic property. The mechanical

property of Cu2TiSi shows elastically stable and Cu2ZrGe shows fragile in nature.

The Ru2TiSi alloy is antiferromagnetic in nature as the magnetic moment is zero but

the symmetrical density of states and direct band gap for both spin channel shows

semiconductor property. The Ru2VSi has positive high magnitude of magnetic mo-

ment so these metal shows ferromagnetic properties as the asymmetrical DOS at

the Fermi level. As the perfect minimum DOS value in the down spin channel of

Ru2VSi, so which is why these material is not true half-metal. From the band struc-

ture of Ru2VSi these metrial has no gap in up spin channel which indicate metallic

property and there is a direct band gap in the down spin channel which shows shows

semiconductor property. From the elastic constant other mechanical property is re-

73



Conclusion

solved. These materials has isotropic but brittle nature from their compound. As

the poisson’s ratio is lower than 0.26 and B/G ratio is less than 1.75 which denotes

these materials has fragile nature. The magnetic moment for Rh2TiSi is low and

Rh2VSi is high and they are paramagnetic and ferromagnetic nature respectively

which are also evident from the density of states for these materials. For engineer-

ing purposes Rh2TiSi can be used as it has high B/G, and poission’s ratio. On the

contrary Rh2VSi is brittle nature and highly anisotropic. For all these materials the

Cauchy’s pressure greater than zero and has metallic bonding. The optical property

for all the alloys shows metallic property. The refractive index and polarization in

the IR and visible region is high.
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List of Abbreviations

BZ : Brillouin Zone

DFT : Density Functional Theory

DOS : Density of States

GGA : Generalized Gradient Approximation

HK : Hohenberg-Kohn

KS : Kohn-Sham

SOC : Spin Orbit Coupling

XC : Exchange correlation

GMR : Giant Magnetoresistance

TMR : Tunnel Magnetoresistane

SGS : Spin Gapless Semiconductor

AF : Antiferromagnetic

NMR : Nuclear Magnetic Resonance
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List of Abbreviations

EM : Electro Magnetic

HDD : Hard Disk Drive

NM : Non Magnetic

DOS : Density of States

PDOS : Partial Density of States
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[88] Norman Troullier and José Lúıs Martins. Efficient pseudopotentials for plane-

wave calculations. Physical review B, 43(3):1993, 1991.

[89] Warren E Pickett. Pseudopotential methods in condensed matter applications.

Computer Physics Reports, 9(3):115–197, 1989.

[90] D Porezag, MR Pederson, and AY Liu. The accuracy of the pseudopoten-

tial approximation within density-functional theory. Computer Simulation of

Materials at Atomic Level, pages 219–230, 2000.

[91] Mike C Payne, Michael P Teter, Douglas C Allan, TA Arias, and ad JD

Joannopoulos. Iterative minimization techniques for ab initio total-energy

84



Bibliography

calculations: molecular dynamics and conjugate gradients. Reviews of modern

physics, 64(4):1045, 1992.

[92] D Singh. Planes waves, pseudopotentials and the lapw, 1994.

[93] Peter Blaha, Karlheinz Schwarz, Georg KH Madsen, Dieter Kvasnicka,

Joachim Luitz, et al. wien2k. An augmented plane wave+ local orbitals pro-

gram for calculating crystal properties, 60, 2001.

[94] Aron J Cohen, Paula Mori-Sánchez, and Weitao Yang. Challenges for density

functional theory. Chemical reviews, 112(1):289–320, 2012.

[95] I Galanakis. Surface properties of the half-and full-heusler alloys. Journal of

Physics: Condensed Matter, 14(25):6329, 2002.

[96] Mahsa Afsari, Arash Boochani, and Mohammadreza Hantezadeh. Electronic,

optical and elastic properties of cubic perovskite cspbi3: Using first principles

study. Optik, 127(23):11433–11443, 2016.

[97] A. Akriche, H. Bouafia, S. Hiadsi, B. Abidri, B. Sahli, M. Elchikh, M.A.

Timaoui, and B. Djebour. First-principles study of mechanical, exchange in-

teractions and the robustness in co2mnsi full heusler compounds. Journal of

Magnetism and Magnetic Materials, 422:13–19, 2017.

[98] Ju-Yong Jong, Jingchuan Zhu, Myong-Gil Jon, Yi Zhou, JinGuk Kim, and

Jihong Yan. Theoretical investigation of stabilities and physical properties of

low cost fe-based full-heusler materials. Journal of Alloys and Compounds,

693:462–467, 2017.

[99] A. Abada, K. Amara, S. Hiadsi, and B. Amrani. First principles study of

a new half-metallic ferrimagnets mn2-based full heusler compounds: Mn2zrsi

and mn2zrge. Journal of Magnetism and Magnetic Materials, 388:59–67, 2015.

[100] A. Hamidani, B. Bennecer, and B. Boutarfa. Structural and elastic properties

of the half-heusler compounds irmnz (z=al, sn and sb). Materials Chemistry

and Physics, 114(2):732–735, 2009.

[101] K. Benkaddour, A. Chahed, A. Amar, H. Rozale, A. Lakdja, O. Benhelal,

and A. Sayede. First-principles study of structural, elastic, thermodynamic,

electronic and magnetic properties for the quaternary heusler alloys corufez

(z = si, ge, sn). Journal of Alloys and Compounds, 687:211–220, 2016.

85



Bibliography

[102] S.F. Pugh. Xcii. relations between the elastic moduli and the plastic prop-

erties of polycrystalline pure metals. The London, Edinburgh, and Dublin

Philosophical Magazine and Journal of Science, 45(367):823–843, 1954.

[103] Ericmoore Jossou, Linu Malakkal, Barbara Szpunar, Dotun Oladimeji, and

Jerzy A. Szpunar. A first principles study of the electronic structure, elastic

and thermal properties of ub2. Journal of Nuclear Materials, 490:41–48, 2017.

[104] Volodymyr Ivashchenko, Patrice Turchi, and V. Shevchenko. Phase transfor-

mation b1 to b2 in tic, tin, zrc and zrn under pressure. Condensed Matter

Physics, 16, 09 2013.

[105] J.-C. Charlier, X. Gonze, and J.-P. Michenaud. First-principles study of the

electronic properties of graphite. Phys. Rev. B, 43:4579–4589, Feb 1991.

[106] AH Reshak and Sikander Azam. Theoretical study of the structural, electronic

structure, fermi surface, electronic charge density and optical properties of the

of lnvo4 (ln= sm, eu, gd and dy). Int. J. Electrochem. Sci, 8:10396–10423,

2013.

[107] R. E. Dietz, H. Kamimura, M. D. Sturge, and A. Yariv. Electronic structure

of copper impurities in zno. Phys. Rev., 132:1559–1569, Nov 1963.

[108] Cr R Brundle, M Be Robin, and Harold Basch. Electronic energies and elec-

tronic structures of the fluoromethanes. The Journal of Chemical Physics,

53(6):2196–2213, 1970.
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Appendix A

Complex dielectric function

relation

As the complex dielectric function relation is [134],

εij = ε′ij + ε′′ij

Di = εijEj

In this case ,it is taken into account of the frequency dispersion , so the much better

approximation is.

εij(ω) = ε′ij(ω) + ε′′ij(ω)

ε′ij is the real part of complex dielectric constant function.ε′′ij is the imaginary part of

complex dielectric constant function which is associated with energy loss for passing

the wave into the medium.

Then take spatial dispersion as well as frequency dispersion into account, within the

limits of linear theory. This implies the validity of the equations

εij(ω,K) = ε′ij(ω,K) + ε′′ij(ω,K)
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Di(ω,K) = εijEj(ω,K)

Moreover, the function εij(ω,K) determines the energy loss a particle is subject to

when moving through matter, the molecular forces between bodies, and the fluctu-

ations of the electromagnetie field. Thus, it characterizes the medium (crystal) very

completely.

The behaviour of a dielectric material to an external electric field is characterized

by three macroscopic vectors: The electric field strength ε; the polarization P and

the electric displacement D. [112]

The microscopic report of the material is determined primarily by the polarization.

As a result of this, the first attempt in all the examples treated by electromagnetism

in this book is to calculate P. The dielectric constant εr is then determined from

P, and the optical properties are deduced from εr.

The polarization is expressed as the net dipole moment per unit volume. The appli-

cation of a field produces a polarization by the forces asserted on the positive and

negative charges of the atoms that are apprehended within the medium. If the atoms

have permanent dipole moments, the field will affect a torque to these randomly ori-

entated dipoles and want to align them along the field direction. If there are no

permanent dipoles, the field will push the positive and negative charges in opposite

directions and induce a dipole parallel to the field. In either case, the ultimate result

is the same: the application of the field tends to produce many microscopic dipoles

aligned parallel to the direction of the external field. This generates a net dipole

moment within the dielectric, and hence a polarization.

The microscopic dipoles will all tend to align along the field direction, and so the

polarization vector will be parallel to ε. This allows us to write:

P = ε0 × E (A.1)

where ε0 is the electric permittivity of free space and χ is the electric susceptibility

of the medium.

Equation A. 1 creates two assumptions that need a brief word of explanation.(1)

We have assumed that the medium is isotropic, even though we know that some
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materials are anisotropic. In particular, anisotropic crystals have preferred non-

equivalent axes, and P will not necessarily be parallel 10& (2) We have assumed

that P varies linearly with E. This will not always be the case. In particular, if

the optical intensity is very large, we can enter the dominion of nonlinear optics, in

which eqn A. 1 is not valid.

Both of these qualifications introduce unnecessary complications at this stage, and

are not considered further in this appendix. The electric displacement D of the

medium is related to the electric field E and polarization P through:

D = ε0Q + P (A.2)

This may be considered to be the definition of D. By combining eqns A.I and A.2,

we can write:

D = ε0εrε (A.3)

where

εr = 1 + x. (A.4)

εr is the relative dielectric constant of the medium, and is an extremely important

parameter in the explanation of the propagation of light through dielectrics. In elec-

trostatic problems we are frequently interested in calculating the spatial dependence

of electric field, and hence the electric potential V , from the free charge density %.

This calculation can be performed by using the Poisson equation:

∇2V = − Q

εrε0
(A.5)

Poisson’s cquation is derived from Gauss’s law of electrostatics:

∇− ε =
e

εrε0
(A.6)

We recall that the electric fteld strength is the gradient of the potential:
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ε = −∇V (A.7)

Equation A.5 follows directly by substituting for E in eqn A.6 using eqn A.7. Once

we know V , we can then determine ε from eqn A. 7. This approach is also useful

when we are considering devices in which the potential across the device is fixed

by an external voltage source. The response of a material to external magnetic

fields is treated in a similar way to the response of dielectrics to electric fields. The

magnetization M of the medium is proportional to the magnetic field strength H

through the magnetic susceptibility XM :

M = XMH (A.8)

The magnetic flux density B is related to H and M through:

B = µ0(H + M)

= µ0 (1 + χM) H

= µ0µrH

(A.9)

where µ0 is the magnetic permeability of the vacuum and µr = 1 + χM is the

relative magnctic permeability of the medium. µ0 = 4π × 10−7Hm−1 in SI units.

The laws that deduce the combined electric and magnetic response of a medium are

summarized in Maxwell’s equations of electromagnetism:

∇ ·D = e (A.10)

∇ ·B = 0 (A.11)

∇× ε = −∂B

∂t
(A.12)

∇×H = j +
∂D

∂t
(A.13)

where Q is the free charge density, and j is the current density. The first of these

four equations is Gauss’s law of electrostatics (equ A.6) written in terms of D rather

than E. The second is the equivalent of Gauss’s law for magnetostatics with the

assumption that free magnetic monopoles do not exist. The third equation combines
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the Faraday and Lenz laws of electromagnetic induction. The fourth is a statement

of Ampere’s law, with the second term on the right hand side to account for the

displacement current.

The second Maxwell equation naturally leads to the concept of the vector potential.

This is defined through the equation

B = ∇× A (A.14)

We see that the vector potential A automatically satisfies eqn A.11, because ∇ ·
(∇×A) = 0 for all A. However, this definition does not define A uniquely, We can

add any vector of the form ∇ϕ to A without changing B. This follows because

∇× (A +∇ϕ) = ∇×A +∇× (∇ϕ) = ∇×A. (A.15)

ϕ(r) can be any scalar function of r. For this reason, we have to give an additional

definition, which specifies the gauge in which we are working. The Coulomb gauge

is defined by

∇ ·A = 0 (A.16)

This gauge is a convenient one because it allows us to derive a simple relationship

between E and A. By substituting for B in the third Maxwell equation (eqn A.12)

using eqn A.14, we see that:

∇×E = − ∂

∂t
(∇×A) = ∇×

(
−∂A

∂t

)
(A.17)

The solution is

ε = −∂A
∂t

+ constant (A.18)

where the constant is any vector whose curl is zero. If the electrostatic potential is

V , then we can combine eqn A.18 with eqn A.7 by writing
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ε = −∂A

∂t
−∇V (A.19)

This works because ∇ × ∇V = 0. By taking the divergence of eqn A.19, we can

recover Poisson’s equation (A.5) if we satisfy eqn A.16, that is, if we are in the

Coulomb gauge. The more general definition of ε given in eqn A.19 reduces to eqn

A. 7 when the magnetic field does not change with time, and to

ε = −∂A
∂t

(A.20)

when the static potential is constant throughout space. The vector potential in the

Coulomb gauge is used in the semiclassical treatment of the interaction of light with

atoms.

For the electromagnetic wave, Maxwell was able to show that eqns A.10-A.13 were

congruent with wavelike solutions in a medium with no free charges or currents. To

see this we first simplify eqns A. 12 and A. 13 by setting j = 0 and eliminating B

and D using eqns A. 3 and A.9. This gives:

∇× ε = −µ0µr
∂H

∂t
, (A.21)

∇×H = ε0εr
∂ε

∂t
(A.22)

We then take the curl of eqn A.21 and eliminate ∇×H using eqn A.22. This gives:

∇× (∇× ε) = −µ0µrε0εr
∂2ε

∂t2
. (A.23)

The left hand side can be simplified by using the vector identity

∇× (∇× ε) = ∇(∇ · ε)−∇2ε. (A.24)

Equation A.6 with Q = 0 tells us that ∇ · ε = 0. Therefore we obtain the final

result:
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∇2ε = µ0µrε0εr
∂2ε

∂t2
(A.25)

Equation A. 25 is of the same form as the wave equation:

∂2y

∂x2
=

1

v2

∂2y

∂t2
(A.26)

where v is the velocity of the wave. We therefore identify eqn A. 25 as describing

clectromagnetic waves with a phase velocity v given by

1

v2
= µ0µ, ε0εr. (A.27)

In free space εr = µr = 1 and the velocity of the wave is c, so we have:

c =
1

√
µ0ε0

= 2.998× 108 m s−1. (A.28)

At the same time, we see from eqns A.27 and A. 28 that the velocity in a medium

is given by

v =
1

√
εrµr

c. (A.29)

We define the refractive index n of the medium as the ratio of the velocity of light

in free space to the velocity in the medium:

n =
c

v
, (A.30)

At optical frequencies we can set µr = 1, and thus conclude:

n =
√
εr. (A.31)

This allows us to relate the propagation constants of electromagnetic waves in a

medium to the dielectric constant. The solutions to eqn A. 25 are of the form
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ε(z, l) = ε0ei(kz−ωN) (A.32)

where E0 is the amplitude of the wave, z is the dir he wave vector, and ω is the

angular frequency. The

k =
2π

λ
=
ω

v
=
nω

c
(A.33)

ε(z, l) = ε0ei(kz−ω), (A. 32 ) of the wave, z is the direction of propagation, k is ics

and is used extensively throughout this book. Physically measurable quantities are

obtained by taking the real part of the complex wave. where λ, is the wavelength

inside the medium. The first equality is the definition of k, the second follows

by substitution of eqn A. 32 into eqn A. 25 with v given by eqn A.27, and the

third follows from the definition of n given in eqn A.30. The energy flow in an

electromagnetic wave can be calculated from the Poynting vector:

I = E ×H. (A.34)

intensity of the light wave. The intensity is defined as the energy crossing a unit

area in unit time, and is therefore given by:

I = vuv. (A.35)

where v is the velocity of the wave and uv is the energy density per unit volume of

the beam. The Poynting vector given by eqn A. 34 can be evaluated easily for the

case of plane waves. Consider a wave polarized along the x axis of angular frequency

ω propagating in the z direction. From eqn A.21 or A.22 we see that the magnetic

field is perpendicular to the electric field. E and H therefore form a right handed

system as depicted in Fig. A.1. Hence the components of the wave must satisfy:
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Hy

z

εx

Figure A.1: The electric and magnetic fields of an electromagnetic wave from a right

handed system. The figure shows the directions of the fields in a wave polarized along the

x axis and propagating in the z direction

εx(z, t) = εx0e(kz−ωt)

εy(z, t) = 0

Hx(z, t) = 0

Hy(z, t) = Hy0ei(kz−ωt)

(A.36)

On substituting these fields into eqn A.21, we find that:

kεx0 = µoµrωHy0 (A.37)

and hence that

Hy0 =
εx0

Z
(A.38)

where

Z =
k

µ0µrω
=

√
µ0µr
ε0εr

=
1

cε0n
. (A.39)

The second equality in eqn A. 39 follows from eqns A.33 and A.27, while the third

follows from Eq. A. 28 and A.31 with µr = 1. The quantity Z is called the wave

impedance. On substituting eqns A. 36− A. 39 into eqn A. 34 , we obtain:

I =
〈ε(t)2〉ms

Z
=

1

2
cε0nε

2
0 (A.40)

where 〈ε(t)2〉ms represents the root-mean-square time average. This shows that
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the intensity of a light wave is proportional to the square of the amplitude of the

electric field. The relationship can be generalized for all light waves irrespective of

the particular polarization of the beam.

In many topics covered in this book, it will be necessary to treat the refractive

index as a complex number. A well-known example of how such a situation arises

occurs when treating the propagation of electromagnetic waves through a conducting

medium such as a metal. In a conductor, the current density is related to the electric

field through the electrical conductivity σ according to:

j = σε (A.41)

Using this relationship to substitute for j in eqn A.13, and eliminating D,B and H

in the same way that led to eqn A.25, we obtain:

∇2ε = σµ0µr
∂E

∂t
+ µ0µrε0εr

∂2ε

∂t2
(A.42)

We now look for plane wave solutions of the type given by eqn A.32. Substitution

of eqn A. 32 into eqn A. 42 gives:

k2 = iσµ0µrω + µ0µrε0εrω
2 (A.43)

This can be made compatible with the usual relationship between ω and k given in

eqn A. 33 by allowing n to be a complex number. The complex refractive index is

usually written ñ, and is defined by

k = n
ω

c
(A.44)

By combining eqns A.43 and A.44 we obtain:

ñ2 =
µrσ

ε0ω
i+ µrεr (A.45)

Let the electric field for incident, reflected and transmitted electromagnetic beam is

εix,ε
r
x,ε

t
x and simultaneously for magnetic filed the expression is H i

y,H
r
y ,H t

y.
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where we have made use of eqn A.28. This of course reduces to eqn A. 31 if we

set σ = 0 and µr = 1. The physical significance of the complex refractive index

implied by eqn A.45. The Maxwell equations also allow us to treat the transmission

and reflection of light at an interface between two materials. Consider a light ray

is incident on dielectric material. Part of the beam is transmitted into the medium

and the rest is reflected. The solution for an arbitrary angle of incidence was treated

by Fresnel, and the resulting formula are known as Fresnel’s equations. We restrict

ourselves here to the simpler case when the angle of incidence is zero: that is,

normal incidence. We consider again an x-polarized light beam propagating in the z

direction, with the field directions as shown in Fig. A.1. The electric and magnetic

fields are given by eqn A.36. The beam is incident on a medium with complex

refractive index ñ. The fields are related to each other through eqn A.38, with Z

given by eqn A.39, although we now have to allow for the possibility that n may

be complex. The boundary conditions at the interface between two dielectrics tell

us that the tangential components of the electric and magnetic fields are conserved.

Applying this to this case, we must have that both εx and Hy are conserved across

the boundary. Hence we can write:

εix + εrx = εtx′ (A.46)

and

H i
y −Hr

y = H t
y′ (A.47)

where the superscripts i, r and t refer to the incident, reflected and transmitted

beams respectively. By making use of the relationship between the magnetic and

electric fields given in eqns A.38-A.39, we can rewrite eqn A.47 as:

εlx − ε′x = n̄εtx (A.48)

where we have assumed that the light is incident from air with ñ = 1 and that

µr = 1 at the optical frequencies of interest here. Equations A.46 and A.48 can be

solved together to obtain
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εrx
ε′x

=
ñ− 1

n̄+ 1
(A.49)

This can be rearranged to obtain the required result for the reflectivity R :

R =

∣∣∣∣εrxεix
∣∣∣∣2 =

∣∣∣∣ ñ− 1

ñ+ 1

∣∣∣∣2 (A.50)

101



Appendix B

Kramers–Kronig relations and

dielectric function

The imaginary part of the complex dielectric function ignoring all intra-band tran-

sitions would be obtained as [122]

Im εinter
ij (ω) =

h2e2

πm2
eω

2

∑
n

∫
dk
〈
Ψcn

k

∣∣pi
∣∣Ψvn

k

〉 〈
Ψvn

k

∣∣pβ∣∣Ψcn
k

〉
σ (Ecn

k − Evn
k − ω)

(B.1)

It includes the summation of inter-band transitions from occupied valence levels with

agent-state |Ψv
k 〉 and agent-value Evn

k to unoccupied conduction levels with agent-

state |Ψ cn
k 〉 and agent-value Ecn

k where p expressed for momentum operator. The

other quantities such as the refraction, absorption, reflection indexes and etc. can

be derived using the real or imaginary parts of the dielectric function. With the help

of the imaginary part of dielectric function, one can determine the corresponding

real part via the Kramers–Kronig relations:

Re ε
[inter]
ij (ω) = σij

2

π
P

∫ ∞
0

ω Im εij(ω)

ω2 − ω2
(B.2)

εij(ω) = ε′ij(ω) + ε′′ij(ω) (B.3)
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Kramers–Kronig relations and dielectric function

As the equation is mentioned earlier for metallic system. ε′ij is the real part of

complex dielectric constant function.ε′′ij is the imaginary part of complex dielectric

constant function which is associated with energy loss for passing the wave into the

medium.

In which, P demonstrate the principal value of integral. On the other hand, the

contribution of metallic intera-band transitions is obtained as follows

Im ε
[intra]
ij (ω) =

Γω2
pl,ij

ω (ω2 + Γ2)
,Re ε

[intra]
ij (ω) =

ω2
pl,ij

ω (ω2 + Γ2)
ω2

pl (B.4)

In this equation,Γ symbolizes the lifetime broadening in Drude model,ωpl implies

plasma frequency and n signify electron den-sity. The total dielectric constant func-

tion including all interband and intra-band transitions is obtained as follows:

This type of equation is also given before

ε(ω) = ε
[inter]
ij (ω) + ε

[intra]
ij (ω) (B.5)

Moreover, the tensor εij(ω,K) determines the energy loss a particle is subject to

when moving through matter, the molecular forces between bodies, and the fluctu-

ations of the electromagnetie field. Thus, it characterizes the medium qualitatively.

The energy loss of electron through a rapid moving throughout the crystal is de-

scribed by Eloss function which related to dielec-tric function as follows:

( Eloss )
...Lij(ω) = − Im

{
1

εij(ω)

}
=

Im εij

(Re εij)
2 + (Im εij)

2 (B.6)

These interactions include intraband and interband transitions, free electron oscil-

lations, phonon excitations, inner shell ionization and etc. The energy region where

the curve transfers from negative to positive values in the diagram of real part of

dielectric function corresponds to the plasmon energy. Another calculated optical

parameter is coefficient:

R(ω) : Rij(ω) =

[
(Re εij + i Im εij)

2 − 1

(Re εij + iImεij)
2 + 1

]
(B.7)
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Kramers–Kronig relations and dielectric function

Optical absorption coefficient A(ω) is deduced as follows in terms of real and imag-

inary parts of dielectric function

Aij(ω) =

√
2ω

c

[(
Re ε2

ij + Im ε2
ij

)1/2 − Re εij

]1/2

(B.8)

Absorption is related to transition between occupied and unoc-cupied bands in con-

sequence of light and electron interaction. Optical conduc-tivity is also a quantity

which depends on the interband and intraband transitions. Optical conductivity is

calculated in terms of Im ε(ω) as follows:

δij(ω) =
ωij

4π
Im εij(ω) (B.9)
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