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Abstract

The electronic, magnetic and optical properties of Ni and Cd based full-Heusler alloys,

Ni2NbSi, Ni2ZrGe, Cd2MnAs and Cd2MnSb, are studied using the spin polarized full-

potential linearized augmented plane wave (FP-LAPW) method based on Density Functional

Theory (DFT). The exchange correlation potential PBE-GGA approach, as implemented in

the WIEN2k code, is used to investigate band structure, density of states, and optical spectra

for these Heusler compounds. The optimized lattice parameters were estimated to be 5.93

Å, 6.13 Å, 6.90 Å and 7.15 Å for Ni2NbSi, Ni2ZrGe, Cd2MnAs and Cd2MnSb respectively.

Our study reveals that the alloys are metallic in nature since both the spin up and spin

down states are conducting. The optical performance of the compounds is determined by

analyzing real and imaginary dielectric function components, optical absorption, reflectivity

and refractivity spectra.
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Chapter 1

Introduction

In recent years, Heusler alloys have received more attention due to their fascinating physi-

cal features [1–4], especially the half-metallic (HM) character, which was first specified by

de Groot et al in 1983 [5]. whose majority-spin band is metalic while the minority-spin

band is semiconducting with an energy gap at the Fermi level (EF). Half-metallic (HM)

ferromagnets have gathered great attention from scientific researchers due to potential ap-

plications in spintronic devices, such as the magnetic sensor, the tunnel junction, the spin

valve as well as the primary materials in the electrode [6, 7]. The presence of peculiarity

makes such materials to maximize the efficiency of spintronic devices [8]. Heusler alloys

have a special importance due to their higher Curie temperatures (T c) and tunable elec-

tronic structure [9–11]. The magnetic Heusler alloys have become increasingly important

because of their multifunctional properties which render them useful in different domains

from spintronics to magnetic shape-memory and magnetocaloric technologies [12–22]. The

strong magnetoelastic interactions in the magnetic Heusler alloys are responsible for novel

functional properties such as the magnetic-shape memory and magnetocaloric effects (MSME

& MCE) [12,14,15]. Heusler alloys are of significant interest among scientific community due

to the number of the distinguished properties such as shape memory effect, effects of super

elasticity and superplasticity, giant magnetocaloric effect, giant magnetoresistance and mag-

netostrain, etc. This attempts the advantage to a new generation of devices that integrate

standard microelectronics with spin-dependent effects, such as nonvolatile magnetic random

access memories and magnetic sensors [23].
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Introduction

The two main types of Heusler alloys are full-Heusler and half-Heusler alloys. Half-metallic

Heusler alloys that are used in spintronic device applications [24]. Half metallic magnetic

materials with 100% spin polarization (SP) at the interface of the valence and conduction

bands have received a lot of attention. The general formula for ternary Heusler compounds is

X2YZ, where X and Y are transition metals and Z is a main group element. The full-Heusler

compound consists of four fcc sublattices with base as: A (0, 0, 0), B (0.25, 0.25, 0.25),

C (0.5, 0.5, 0.5) and D (0.75, 0.75, 0.75) [25]. In structures such as AlCu2Mn with space

group (225, FM3̄m), the X atoms occupy A and C sites, the Y atom in the B site, and the

Z atom occupy the D site. While, in CuHg2Ti with space group (216, F43̄m), A and B sites

are occupied by X atoms while C and D sites are occupied by Y and Z respectively. These

configurations mainly are affected by valence electrons of X and Y atoms [26–28].

In this report, we present an attempt of density functional theory (DFT) study for Ni

and Cd based alloys, Ni2NbSi, Ni2ZrGe, Cd2MnAs and Cd2MnSb. In condensed matter

physics, quantum chemistry, and material science, density functional theory based electronic

structure calculations are becoming more and more common. Density functional theory is by

far the most widely used approach for electronic structure calculations nowadays. It is usually

called first principle method or ab initio method, because it allows people to determine many

properties of a condensed matter system by just giving some basic structural information

without any adjustable parameter [29]. Another important element of DFT is the precise

approximation for the exchange-correlation functional, which comes from the Kohn-Sham

approach [30].

The report is organized as follows: in chapter one, we illustrate the general introduction

of Heusler alloys. We describe the fundamentals of quantum mechanics in chapter two,

including Schrödinger’s groundbreaking equations, the time-independent Schrödinger equa-

tion, the wave function, atoms and molecules, and the many-body system. The funda-

mental density functional theory is covered in chapter three. It contains electron density,

Thomas-Fermi direct approximation, Hohenberg-Kohn theorems, Kohn-Sham equations,

the exchange-correlation functional, local density approximation (LDA), and generalized-

gradient approximation (GGA). We discuss our entire calculation method and structure,

band structure, density of state (DOS), partial density of state (PDOS), and optical prop-

erties of these materials in chapter four. The summary of this functioning system is covered

in Chapter five.
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Chapter 2

Basic Quantum Mechanics

Quantum mechanics is a useful tool for understanding the electronic structure of chemical

compounds and the processes, thermodynamics, and kinetics of chemical reactions at a

theoretical level [31]. It can be thought of roughly as the study of physics on very small

length scales, although there are certain macroscopic systems it directly applies to. On the

scale of atoms and subatomic particles, it explains how matter behaves and interacts with

energy. This chapter goes through basic concepts and expressions, as well as the most basic

forms that are applicable to many-body systems. In quantum physics, particles display

wavelike properties, and the Schrödinger equation, a particular wave equation, governs the

behavior of these waves. The Schrödinger equation is different in a few ways from the other

wave equations. Despite these modifications, all of our typical techniques for solving a wave

equation and processing the resulting solutions still hold.

2.1 Schrödinger’s groundbreaking equation

The principle of density functional theory are conveniently expounded by making reference

to conventional wave function theory. Any problem in the electronic structure of matter

is covered by Schrödinger’s equation including the time. In most cases, however, one is

concerned with atoms and molecules without time-dependent interactions, so we may focus

on the time-independent Schrödinger’s equation [32]. In 1926, Erwin Schrödinger attempted

to characterize’s matter wave’s by using de Broglie’s connections to describe hypothetical

plane waves, resulting in the most generic form of the famous equation named after him, the

3



Basic Quantum Mechanics

time-dependent Schrödinger equation [33].

i~
∂

∂t
Ψ(~r, t) = Ĥψ(~r, t) (2.1)

Where, Ĥ is the hamiltonian operator, ~ is the dirac constant and Ψ is the wave function.

It is often impracticable to use a complete relativistic formulation of the formula; therefore

Schrödinger himself postulated a non-relativistic approximation which is nowadays often

used, especially in quantum chemistry. Using the Hamiltonian for a single particle

Ĥ = T̂ + V̂ = − ~2

2m
~∇2 + V (~r, t) (2.2)

leads to the (non-relativistic) time-dependent single-particle Schrödinger equation

i~
∂

∂t
Ψ(~r, t) = [− ~2

2m
~∇2 + V (~r, t)]Ψ(~r, t) (2.3)

The Hamiltonian for N particles in three dimensions is

Ĥ =
N∑
i=1

p̂2i
2mi

+ V (~r1, ~r2, ...~rN , t) = −~2

2

N∑
i=1

1

mi

+ V (~r1, ~r2, ....~rN , t) (2.4)

The corresponding Schrödinger equation reads

i~
∂

∂t
Ψ(~r1, ~r2, ....~rN , t) = [−~2

2

N∑
i=1

1

mi

∇2
i + V (~r1, ~r2, ....~rN , t)]Ψ(~r1, ~r2, ....~rN , t) (2.5)

2.2 Time-independent Schrödinger equation

Special cases are the solutions of the time-independent Schrödinger equation, where the

Hamiltonian itself has no time-dependency (which implies a time-independent potential V

(~r1, ~r2, ..., ~rN ) and the solutions therefore describe standing waves which are called stationary

states or orbitals). The time-independent Schrödinger equation is not only easier to treat,

but the knowledge of its solutions also provides crucial insight to handle the corresponding

time-dependent equation. The time-independent equation (2.5) is obtained by the approach

of separation of variables, i.e. the spatial part of the wave function is separated from the

4
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temporal part via. [34]

Ψ(~r1, ~r2, ..., ~rN , t) = ψ(~r1, ~r2, ..., ~rN)τ(t) = ψ~r1, ~r2, ..., rN)e
iEt
~ (2.6)

Furthermore, the l.h.s. of the equation reduces to the energy eigenvalue of the Hamiltonian

multiplied by the wave function, leading to the general eigenvalue equation

Eψ(~r1, ~r2, ..., ~rN) = Ĥψ(~r1, ~r2, ..., ~rN) (2.7)

Again, using the many-body Hamiltonian, the Schrödinger equation becomes

Eψ(~r1, ~r2, ..., ~rN) = [−~2

2

N∑
i=1

1

mi

∇2
i + V (~r1, ~r2, ....~rN)]ψ(~r1, ~r2, ....~rN) (2.8)

2.3 The wave function

The wave function ψ has no direct physical meaning. The wave function ψ(r, t) describes the

position of a particle with respect to time. It can be considered as probability amplitude.

|ψ|2 is proportional to the probability of finding a particle at a particular time. It is the

probability density [35,36]

|ψ|2 = |ψ∗ψ|2 (2.9)

The wave function ψ must be finite everywhere. If ψ is infinite for a par- ticular point, it

mean an infinite large probability of finding the particles at that point. This would violates

the uncertainty principle. It must be single valued. If ψ has more than one value at any

point, it mean more than one value of probability of finding the particle at that point

which is obviously ridiculous. The wave function must be continuous and have a continuous

first derivative everywhere and its must be normalizable. For the sake of simplicity the

discussion is restricted to the time-independent wave function. A question always arising

with physical quantities is about possible interpretations as well as observations. The Born

probability interpretation of the wave function, which is a major principle of the Copenhagen

interpretation of quantum mechanics, provides a physical interpretation for the square of the

wave function as a probability density [37,38]

P = |ψ(~r1, ~r2, ..., ~rN |2d~r1d~r2....d ~rN (2.10)

5
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Equation (2.10) describes the probability that particles 1, 2, ..., N are located simultaneously

in the corresponding volume element d~r1 d~r2 ....d ~rN [39]. What happens if the positions of

two particles are exchanged, must be considered as well. Following merely logical reasoning,

the overall probability density cannot depend on such an exchange, i.e.

|ψ(~r1, ~r2, ..., ~ri, ~rj, ..., ~rN)|2 = |ψ(~r1, ~r2, ..., ~rj, ~ri, ..., ~rN)|2 (2.11)

There are only two possibilities for the behavior of the wave function during a particle ex-

change. The first one is a symmetrical wave function, which does not change due to such

an exchange. This corresponds to bosons (particles with integer or zero spin). The other

possibility is an anti-symmetrical wave function, where an exchange of two particles causes

a sign change, which corresponds to fermions (particles which half-integer spin) [40, 41]. In

this text only electrons are from interest, which are fermions. The anti-symmetric fermion

wave function leads to the Pauli principle, which states that no two electrons can occupy the

same state, whereas state means the orbital and spin parts of the wave function (the term

spin coordinates will be discussed later in more detail). The antisymmetry principle can be

seen as the quantum-mechanical formalization of Pauli’s theoretical ideas in the description

of spectra (e.g. alkaline doublets) [42].

Another consequence of the probability interpretation is the normalization of the wave func-

tion. If equation (2.10) describes the probability of finding a particle in a volume element,

setting the full range of coordinates as volume element must result in a probability of one,

i.e. all particles must be found somewhere in space. This corresponds to the normalization

condition for the wave function.

∫
dr̂1

∫
dr̂2...

∫
dr̂N |ψ(~r1, ~r2, ..., ~rN |2 = 1 (2.12)

Equation (2.12) also gives insight on the requirements a wave function must fulfill in order

to be physical acceptable. Wave functions must be continuous over the full spatial range and

square-integratable [43]. Calculating the expectation values of operators with a wave function

also provides the expectation value of the relevant observable for that wave function [44].

6
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For an observable O(~r1, ~r2, ..., ~rN) , this can generally be written as

O = 〈O〉 =

∫
d~r1

∫
d~r2...

∫
d ~rNψ

∗(~r1, ~r2, ..., ~rN)Ôψ(~r1, ~r2, ..., ~rN) (2.13)

2.4 Atoms and molecules

Charged particles are present in all atomic and molecular systems. The Schrödinger equation

for a single electron, in which the electron moves in a Coulomb potential.

i~
∂

∂t
ψ(~r) = [− ~2

2m
~∇2 − e2

4πε0

1

|~r|
]ψ(~r) (2.14)

The so-called atomic units are introduced at this stage for future use for the purpose of

simplicity. That is, the electron mass me, the electron charge e, the reduced Planck constant

(Dirac constant), ~ and the vacuum permittivity factor 4πε0 are all equal to one [45].

The Schrödinger equation for the single electron simplifies to

Eψ(~r) = [−1

2
∇2 − 1

|~r|
]ψ(r̄) (2.15)

The Schrödinger equation can be solved analytically in this way. Although the Schrödinger

equation will soon be analytically accessible for the description of matter, including atoms.

The use of (2.8) allows the development of a generalized many-body Schrödinger equation

for a system made up of N electrons and M nuclei ,where external magnetic and electric

fields are neglected.

Eiψi(~r1~r2... ~rN ; ~R1
~R2... ~RN) = Ĥψ(~r1~r2... ~rN ; ~R1

~R2... ~RN) (2.16)

Equation (2.16) does not seem overly complicated on the first look, but an examination of

the corresponding molecular Hamiltonian

Ĥ = − ~2

2me

N∑
i=1

∇2
i −

~2

2Mk

M∑
k=1

∇2
k −

N∑
i=1

M∑
k=1

Zke
2

rik
+

1

2

N∑
i=1

N∑
j>i

e2

rij
+

1

2

M∑
k=1

M∑
l>k

ZkZl
Rkl

(2.17)

7
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reveals the real complexity of the equation.

In equation (2.17), Mk represents the nuclear mass in atomic units (i.e. in units of the

electron mass), Zk and Zl represent the atomic numbers, and rij = |~ri − ~rj|, rik = | ~ri −Rk|

and Rkl = | ~Rk − ~Rl| represent the distances between electron-electron, electron-nucleus and

nucleus-nucleus respectively. A term-by-term interpretation of the right hand side in (2.17)

reveals that the first two terms correspond to the kinetic energies of the electrons and nuclei.

The latter three terms denote the potential part of the Hamiltonian in terms of electrostatic

particle-particle interactions. This is reflected by the corresponding signs, where the negative

sign denotes an attractive potential between electrons and nuclei, whereas the positive signs

denote repulsive potentials between electrons and electrons as well as the nuclei among

themselves [46].

2.5 The Many-Body System and Born-Oppenheimer

(BO) Approximation

The Born-Oppenheimer approximation is one of the basic concepts underlying the description

of the quantum states of molecules. This approximation makes it possible to separate the

motion of the nuclei and the motion of the electrons. In this discussion nuclear refers to

the atomic nuclei as parts of molecules not to the internal structure of the nucleus. The

Born-Oppenheimer approximation neglects the motion of the atomic nuclei when describing

the electrons in a molecule. The physical basis for the Born-Oppenheimer approximation

is the fact that the mass of an atomic nucleus in a molecule is much larger than the mass

of an electron (more than 1000 times). Because of this difference, the nuclei move much

more slowly than the electrons. In addition, due to their opposite charges, there is a mutual

attractive force of acting on an atomic nucleus and an electron. This force causes both

particles to be accelerated. Since the magnitude of the acceleration is inversely proportional

to the mass. The acceleration of the electrons is large and the acceleration of the atomic

nuclei is small; the difference is a factor of more than 1000.

As a consequence, the general Hamiltonian is replaced by the so-called electronic Hamiltonian

from equation (2.17)

Ĥ = − ~2

2me

N∑
i=1

∇2
i −

N∑
i=1

M∑
k=1

Zke
2

rik
+

1

2

N∑
i=1

N∑
j>i

e2

rij
(2.18)

8
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or in terms of operators

Ĥel = T̂ + Û + V̂ = T̂ + ˆVtot (2.19)

Especially for problems of molecular physics and quantum chemistry, the electronic Schrödinger

equation is of major interest. But despite all simplifications a simple look at equations (2.16)

to (2.19) indicates that there are still a few more crucial points left to deal with until a useful

solution can be obtained. Inspection of equations (2.18) and (2.19) shows that the kinetic

energy term depend on the nuclear coordinates Rkl , or in other words, it is only a func-

tion of the electron number. Also the electron-electron repulsion Û is the same for every

system with only Coulomb interactions. Therefore the only part of the electronic Hamil-

tonian which depends on the atomic molecular system is the external potential V̂ caused

by the nucleus-electron repulsion. Subsequently this also means that T̂ and Û only need

the electron number N as input and will therefore be denoted as ’universal’, whereas V̂ is

system-dependent. The expectation value of V̂ is also often denoted as the external potential

Vext , which is consistent as long as there are no external magnetic or electrical fields [44].

As soon as the external potential is known, the next step is the determination of the wave

functions ψi which contain all possible information about the system. As simple as that

sounds, the exact knowledge of the external potential is not possible for most natural sys-

tems, i.e. in similarity to classical mechanics, the largest system which can be solved ana-

lytically is a two body system, which corresponds to a hydrogen atom. Using all approxi-

mations introduced up to now it is possible to calculate a problem similar to H+
2 , a single

ionized hydrogen molecule. To get results for larger systems, further approximations have

to be made.

2.6 The Hartree-Fock approach

In order to find a suitable strategy to approximate the analytically not accessible solutions

of many-body problems, a very useful tool is variational calculus, similar to the least-action

principle of classical mechanics. By the use of variational calculus, the ground state wave

function ψ0, which corresponds to the lowest energy of the system E0 , can be approached.

A useful literature source for the principles of variational calculus has been provided by

T. Flieÿbach [47]. Hence, for now only the electronic Schrödinger equation is of interest,

therefore in the following sections we set Ĥ ≡ Ĥel ,E ≡ Eel , and so on. Observables in

9
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quantum mechanics are calculated as the expectation values of operators [48,49]. The energy

as observable corresponds to the Hamilton operator, therefore the energy corresponding to

a general Hamiltonian can be calculated as

E = 〈Ĥ〉 =

∫
d~r1

∫
d~r2...

∫
d ~rNψ

∗(~r1, ~r2, ..., ~rN)Ĥψ(~r1, ~r2, ..., ~rN) (2.20)

The Hartree-Fock technique is based on the principle that the energy obtained by any (nor-

malized) trial wave function other than the actual ground state wave function is always an

upper bound, i.e. higher than the actual ground state energy. If the trial function happens

to be the desired ground state wave function, the energies are equal

Etrial ≥ E0 (2.21)

with

Etrial =

∫
d~r1

∫
d~r2...

∫
d ~rNψ

∗
trial(~r1, ~r2, ..., ~rN)Ĥψtrial(~r1, ~r2, ..., ~rN) (2.22)

and

E0 =

∫
d~r1

∫
d~r2...

∫
d ~rNψ

∗
0(~r1, ~r2, ..., ~rN)Ĥψ0(~r1, ~r2, ..., ~rN) (2.23)

The expressions above are usually inconvenient to handle. For the sake of a compact notation,

in the following the braket notation of Dirac is introduced. For a detailed description of this

notation, the reader is referred to the original publication [50].

In that notation, equations (2.21) to (2.23) are expressed as

〈ψtrial|Ĥ|ψtrial = Etrial ≥ E0 = 〈ψ0|Ĥ|ψ0 (2.24)

Proof: [11] The eigenfunctions ψi of the Hamiltonian Ĥ (each corresponding to an energy

eigenvalue Ei form a complete basis set, therefore any normalized trial wave function ψtrial

can be expressed as linear combination of those eigenfunctions.

ψtrial =
∑
i

λiψi (2.25)

10
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The assumption is made that the eigenfunctions are orthogonal and normalized. Hence it is

requested that the trial wave function is normalized, it follows that

〈ψtrial|ψtrial〉 = 1 = 〈
∑
i

λiψi|
∑
j

λjψj〉 =
∑
i

∑
j

λ∗iλj〈ψi|ψj〉 =
∑
j

|λj|2 (2.26)

On the other hand, following (2.25) and (2.27)

Etrial = 〈ψtrial|Ĥ|ψtrial〉 = 〈
∑
i

λiψi|Ĥ|
∑
j

λjψj〉 =
∑
j

Ej|λj|2 (2.27)

Together with the fact that the ground state energy E0 is per definition the lowest possible

energy, and therefore has the smallest eigenvalue (E0 ≤ Ei), it is found that

Etrial =
∑
j

Ej|λj|2 ≥ E0

∑
j

|λj|2 (2.28)

what resembles equation (2.24). Equations (2.20) to (2.28) also include that a search for

the minimal energy value while applied on all allowed N-electron wave-functions will always

provide the ground-state wave function (or wave functions, in case of a degenerate ground

state where more than one wave function provides the minimum energy). The mathemat-

ical framework used above, i.e.rules which assign numerical values to functions, so called

functionals, is also one of the main concepts in density functional theory. A function gets

a numerical input and generates a numerical output whereas a functional gets a function

as input and generates a numerical output [51]. Expressed in terms of functional calculus,

where ψ → N addresses all allowed N-electron wave functions, this means [39]

E0 = min
ψ→N

E[ψ] = min
ψ→N
〈ψ|Ĥ|ψ〉 = min

ψ→N
〈ψ|T̂ + V̂ + Û |ψ〉 (2.29)

Due to the vast number of alternative wave functions on the one hand and processing power

and time constraints on the other, this search is essentially unfeasible for N-electron systems.

Restriction of the search to a smaller subset of potential wave functions, as in the Hartree-

Fock approximation, is conceivable.

11
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2.7 Slater-determination

A slater determinant is a formula in quantum mechanics that describes the wave function of

a multi-fermionic system. It satisfies anti-symmetry criteria, and thus the Pauli principle, by

changing sign when two electrons are exchanged (or other fermions). Only a small fraction

of all potential fermionic wave functions can be expressed as a single slater determinant, but

because of their simplicity, they are an important and useful subset. In the Hartree-Fock

approach, the search is restricted to approximations of the N-electron wave function by an

antisymmetric product of N (normal- ized) one electron wave-functions, the so called spin-

orbitals χi(~xi) A wave function of this type is called Slater-determinant, and reads [52,53].

Ψ0 ≈ φSD = (N !)−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣

X1(~x1) X2(~x1) · · · XN(~x1)

X1(~x2) X2(~x2) · · · XN(~x2)
...

...
. . .

...

X1(~xN) X2(~xN) · · · XN(~xN)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.30)

It is important to notice that the spin-orbitals χi(~xi) are not only depending on spatial co-

ordinates but also on a spin coordinate which is introduced by a spin function, ~xi = ~ri, s

A detailed discussions of the spin orbitals and their (necessary) properties is omitted in this

text, a detailed treatise is provided in the books by Szabo and Holthausen [52]. As spin or-

bitals e.g. hydrogen-type orbitals (for atomic calculations) and linear combinations of them

are used [54].

Returning to the variational principle and equation (2.29), the ground state energy approx-

imated by a single slater determinant becomes

E0 = min
φSD→N

E[φSD] = min
φSD→N

〈φSD|Ĥ|φSD〉 = min
φSD→N

〈φSD|T̂ + V̂ + Û |φSD〉 (2.31)

A general expression for the Hartree-Fock Energy is obtained by usage of the Slater deter-

minant as a trial function.

EHF = 〈φSD|Ĥ|φSD〉 = 〈φSD|T̂ + V̂ + Û |φSD〉 (2.32)

For the sake of brevity, a detailed derivation of the final expression for the Hartree-Fock

energy is omitted. It is a straightforward calculation found for example in the Book by

12
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Schwabl [55]. The final expression for the Hartree- Fock energy contains three major parts

[52]

EHF = 〈φSD|Ĥ|φSD〉 =
N∑
i

(i|ĥ|i) +
1

2

N∑
i

N∑
j

[(ii|jj)− (ij|ji)] (2.33)

with

(i|ĥi|i) =

∫
X∗i (~xi)[−

1

2
~∇2
i −

M∑
k=1

Zk
rik

]Xi(~xi)d~xi (2.34)

(ii|jj) =

∫∫
|Xi(~xi)|2

1

rij
|Xj(~xj)|2d~xid~xj, (2.35)

(ii|jj) =

∫∫
|Xi(~xi)X

∗
j (~xj)

1

rij
Xj(~xj)X

∗
i (~xi)d~xid~xj (2.36)

The first term corresponds to the kinetic energy and the nucleus-electron interactions, ĥ

denoting the single particle contribution of the Hamiltonian,whereas the latter two terms

correspond to electron-electron interactions. They are called Coulomb and exchange inte-

gral, respectively [52,53]. Examination of equations (2.33) to (2.36) furthermore reveals, that

the Hartree-Fock energy can be expressed as a functional of the spin orbitals EHF = E[{χi}]

Thus,variation of the spin orbitals leads to the minimum energy [52]. An important point

is that the spin orbitals remain orthonormal during minimization. This restriction is ac-

complished by the introduction of Lagrangian multipliers λi the resulting equations, which

represent the Hartree-Fock equations. For a detailed derivation, the reader is referred to the

book by Szabo and Ostlund [52,53,56].

Finally, one arrives at

f̂Xi = λiXi i = 1, 2, ..., N (2.37)

with

f̂i = −1

2
~∇2
i −

M∑
k=1

Zk
rik

+
N∑
i

[Ĵj(~xi)− K̂j(~xi)] = ĥi + V̂ HF (i) (2.38)

the Fock operator for the i→th electron.In similarity to (2.33) to (2.36), the first two terms

represent the kinetic and potential energy due to nucleus-electron interaction, collected in the

core Hamiltonian ĥi operators,whereas the latter terms are sums over the Coulomb operator

Ĵj and the exchange operators K̂j with the other j electrons, which form the Hartree-Fock

potential V̂ HF . There the major approximation of Hartree-Fock can be seen. The two
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electron repulsion operator from the original Hamiltonian is exchanged by a one-electron

operator V̂ HF which describes the repulsion in average [52].

2.8 Limitations and failings of the Hartree-Fock ap-

proach

The number of electrons in an atom or a molecule might be even or odd. The compound

is in a singlet state if the number of electrons is even and they are all in double occupied

spatial orbitals, φi. Closed-shell systems are what they are called. Open-shell systems are

compounds with an odd number of electrons and compounds with single occupied orbitals,

i.e. species with a triplet or higher ground state. These two sorts of systems relate to

two different Hartree-Fock techniques. The restricted HF technique (RHF) considers all

electrons to be coupled in orbitals,whereas the unconstrained HF method (UHF) removes

this restriction entirely. Open-shell systems may alternatively be described using an RHF

method, in which only the single occupied orbitals are eliminated, resulting in a limited

open-shell HF (ROHF), which is more realistic but also more difficult and hence less popular

than UHF [57]. Closed-shell systems, on the other hand, need an unlimited approach to

get good outcomes. For example, a system that places both electrons in the same spatial

orbital cannot properly describe the dissociation of H2 (i.e. the behavior at high internuclear

distances), because one electron must be positioned at one hydrogen atom. As a result, in

HF calculations, technique selection is always crucial [58].

Kohn states several M = p5 with 3 ≤ p ≤ 10 parameters for an output with adequate

accuracy in the investigations of theH2 system [59]. For a system with N = 100 electrons,

the number of parameters rises to

M = p3N = 3300to10300 ≈ 10150to10300 (2.39)

According to equation (2.40), energy reduction would have to be done in a space with at least

10150dimensions, which is well above current computer capabilities. As a result, HF methods

are limited to situations involving a modest number of electrons (N ≈ 10). This barrier

is commonly referred to as the exponential wall because of the exponential component in

equation (2.33) [59]. Because a multi-electrode wave function cannot be fully characterized

by a single Slater determinant, the energy determined by HF calculations is always greater
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than the precise ground state energy. The Hartree-Fock limit is the highest precise energy

available using HF methods [57].

2.9 Correlation Energy

The exact wave funtion for a system of many interacting electrons is never a single determi-

nant or a simple combination of a few determinants,however.the calculation of the error in

energy, called correlation energy, here defined to be negative,

EHF
corr = E − EHF (2.40)

is a major problem in many-body theory on which there has been a vast amonut of work

and much progress has been made. The mean-field approximation utilized in the HF method

contributes the most to the correlation energy. That is one electron moves in the average field

of the others, a method that ignores the fundamental connection between electron motions.

To better grasp what this implies, consider electron repulsion at short distances, which is not

addressed by a mean-field technique like the Hartree-Fock method [57]. Correlation energy

tends to remain constant for atomic and molecular can changes that conserve the numbers

and types of chemical bonds,but it can change drastically and become determinative when

bonds change.its magnitude can vary from 20 or 30 to thousands of kilocalories per mole,

from a few hundredths of an atomic unit on exchange energies are an order of magnitude or

more bigger,even if the self-exchange term is omitted.

15



Chapter 3

Density Functional Theory(DFT)

The most popular technique for simulating periodic systems in quantum mechanics dur-

ing the past 30 years has been density functional theory. It has recently been adopted by

quantum chemists as well, and it is currently extensively utilized for simulating the energy

surfaces of molecules. In this lecture, we highlight the characteristics that have led to the

widespread adoption of density functional theory and introduce the fundamental ideas that

underlie it. The performance of functional family families is evaluated, and recent advance-

ments in exchange correlation functionals are introduced [60]. Density Functional Theory

(DFT) is a computational quantum mechanical modeling method used in physics, chemistry

and material science to investigate the electronic structure of many body system in partic-

ular atoms, molecules and the condensed phases. Using this theory, the properties of many

electron system can be determined by using functional, function of another function, which

in this case is the spatially dependences electron density. Hence the name density functional

theory comes from the use of functions of the electron density. The success of modern DFT

method is based on the suggestion by Kohn and Sham 1965 that the electron kinetic energy

should be calculated from an auxiliary set of orbitals used for representing the electron den-

sity [61].

The main idea of DFT is to describe a many-body interacting system via its particle density

and not via its many-body wavefunction. Its significance is to reduce the 3N degrees of

freedom of the N-body system to only three spatial coordinates through its particle den-

sity. Its basis is the well known Hohenberg-Kohn (HK), which claims that all properties of
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a system can be considered to be unique functionals of its ground state density. Together

with the Born-Oppenheimer (BO) approximation and Kohn-Sham (KS) ansatz, practical

accurate DFT calculations have been made possible via approximations for the so called

exchange-correlation (XC) potential, which describes the effects of the Pauli principle and

the Coulomb potential beyond a pure electrostatic interaction of the electrons. Since it is im-

possible to calculate the exact (XC) potential (by solving the many-body problem exactly),

a common approximation is the so called local density approximation (LDA) which locally

substitutes the XC energy density of an inhomogeneous system by that of a homogeneous

electron gas evaluated at the local density. In many cases the results of DFT calculations for

condensed matter systems agreed quite satisfactorily with experimental data, especially with

better approximations for the XC energy functional since the 1990s. Also, the computational

costs were relatively low compared to traditional ways which were based on the complicated

many-electron wave function, such as Hartree-Fock theory and its descendants. Despite the

improvements in DFT, there are still difficulties in using DFT to properly describe inter-

molecular interactions; charge transfer excitations; transition states, global potential energy

surfaces and some other strongly correlated systems; and in calculations of the band gap of

some semiconductors [62].

3.1 A new base variable-the electron density

A general statement concerning the computation of observables has been presented in section

2.3 about the wave function ψ. This section is about a quantity that is computed in a

similar manner. The electron density (for N electrons) as the fundamental variable of density

functional theory is stated as [57,63]

n(~r) = N
∑
s1

∫
d~x2...

∫
d~xNΨ∗(~x1, ~x2, ..., ~xN)Ψ(~x1, ~x2, ..., ~xN). (3.1)

It’s worth noting that the notation in (3.1) takes into account a wave function with spin

and spatial coordinates. In more detail, the integral in the equation represents the chance

of finding a certain electron with any spin in the volume element d~r1. Because electrons are

indistinguishable, N times the integral equals the likelihood of finding any electron there.

Other electrons with arbitrary spin and spatial coordinates are represented by the wave

function ψ( ~x1, ~x2, ..., ~xN) [57].
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If the spin coordinates are not taken into account, the electron density can be described as

a quantifiable observable that is simply reliant on spatial coordinates [63].

n(~r) = N

∫
d~r2...

∫
d~rNΨ∗(~r1, ~r2, ..., ~rN)Ψ(~x1, ~r2, ..., ~rN). (3.2)

which can e.g. be determined by X-ray diffraction [57]. Before providing a method that

uses electron density as a variable, make sure it has all of the relevant system information.

That is to say, it must include information on the electron number N as well as the external

potential, which is denoted by V̂ [57].

Integrating the electron density across the geographical variables yields the total number of

electrons [57].

N =

∫
d~rn(~r). (3.3)

3.2 Thomas-Fermi theory

The predecessor to DFT was the Thomas-Fermi (TF) model proposed by Thomas and Fermi

in 1927. The basic idea of the theory is to find the energy of electrons in a spatially uniform

potential as a function of density. Then one uses this function of the density locally even

when the electrons are in the presence of an external potential. The problem of electrons

interacting by a Coulomb interaction in a uniform background (jellium) is unfortunately not

possible to solve exactly, except in the limit of high density. It was solved approximately

with the Hartree-Fock approximation. The strategy here will be to use the results of the

Hartree-Fock approximation to obtain an approximate account of any term in Schrödinger’s

equation that cannot automatically be expressed in terms of density. In this method, they

used the electron density n(r) as the basic variable instead of the wavefunction. The total

energy of a system in an external potential Vext(r) is written as a functional of the electron

density n(r) as:

ETF [n(~r)] = A1

∫
n(~r)

5
3d~r +

∫
n(~r)Vext(~r)d~r +

1

2

∫∫
n(~r)n(~r′)
|~r − ~r′|

d~rd~r′ (3.4)

where the first term is the kinetic energy of the non-interacting electrons in a homogeneous

electron gas (HEG) with A1 = 3
10

(3π2)
2
3 in atomic units . The kinetic energy density of a

HEG is obtained by adding up all of the free-electron energy state εk = k2

2
up to the Fermi
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wave vector kF = [3π2n(~r)]
1
2 as:

t0[n(~r)] =
2

(2π)3

∫ kF

0

k2

2
4πk2dk = A1n(~r)

5
3 (3.5)

The second term is the classical electrostatic energy of the nucleus-electron Coulomb inter-

action. The third term is the classical electrostatic Hartree energy approximated by the

classical Coulomb repulsion between electrons. In the original TF method, the exchange and

correlation among electrons was neglected.

In 1930, Dirac extended the Thomas-Fermi method by R adding a local exchange term

A2

∫
n(~r)

3
4d~r to Eq.(3.1) with A2 = −3

4
( 3
π
)
1
3 which leads Eq.(3.1) to

ETFD[n(~r)] = A1

∫
n(~r)

5
3d~r+

∫
n(~r)Vext(~r)d~r+

1

2

∫∫
n(~r)n(~r′)
|~r − ~r′|

d~rd~r′+A2

∫
n(~r)

4
3d~r (3.6)

The ground state density and energy can be obtained by minimizing the Thomas-Fermi-

Dirac equation (3.3) subject to conservation of the total number (N ) of electrons. By using

the technique of Lagrange multipliers, the solution can be found in the stationary condition:

δ{ETED[n(~r)]− µ(

∫
n(~r)−N)} = 0 (3.7)

where µ is a constant known as a Lagrange multiplier, whose physical mean- ing is the

chemical potential (or Fermi energy at T = 0 K). Eq.(3.4) leads to the Thomas-Fermi-Dirac

equation,
5

3
A1

∫
n(~r)

2
3 + Vext(~r) +

∫
n(~r′)
|~r − ~r′|

d~r′+ 4

3
A2n(~r)

1
3 − µ = 0 (3.8)

This can be solved immediately to provide the density of the ground state. The approx-

imations utilized in the Thomas-Fermi type approach are so rudimentary that the theory

has numerous flaws. The most fundamental flaw is that the theory fails to account for

atom-to-atom bonding, preventing molecules and solids from forming. Although it is insuf-

ficient to represent electrons in matter, the concept of using electron density as the primary

variable demonstrates how DFT works. Thomas-Fermi theory smooths out the charge distri-

bution, because it has no way to know that electrons arrange themselves into separate shells.

Thomas-Fermi-Dirac is even less physical; it predicts that at some finite radius the charge

distribution drops instantaneously to zero. There have been attempts to develop improved
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theories of this type by bringing in dependence upon gradients of the charge distribution.

The original Thomas-Fermi theory is most accurate for nearly uniform charge distributions,

so it is natural to work out the corrections that would occur for an electron gas in a linearly

varying potential, a quadratically varying potential, and so on, using these results to con-

struct an expansion in terms of gra- dients of the density. However, none of the theories of

this type has gained wide usage.

3.2.1 Advantage of Thomas-Fermi model

Thomas-Fermi model over other model are, it,s simplicity, clarity, and validity over a wide

range of densities and temperature. In Thomas-Fermi model, from density we calculated the

kinetic energy approximation term. The kinetic energy expression of Thomas-Fermi theory is

also used as a component in more sophisticated density approximation to the kinetic energy

within modern orbital free density functional theory.

3.2.2 Limitation of Thomas-Fermi model

Thomas-Fermi model accuracy is limited because the resulting expression for the kinetic

energy is only approximate, and because the method does not attempt to represent the

exchange energy of an atom as a conclusion of the pauli exclusion principle. This model can

not describe the exact external potential term. So this model, is not much important for

quantitative predictions in atomic or molecular or solid-state physics.

3.3 The Hohenberg-Kohn (HK) Theorems

DFT was proven to be an exact theory of many body systems by Hohenberg and Kohn in

1964. It applies not only to condensed-matter systems of electrons with fixed nuclei, but also

more generally to any system of interacting particles in an external potential Vext(~r). The

theory is based upon two theorems. The basic lemma of Hohenberg-Kohn states that not

only n(~r) is a functional of V (~r) but that also V (~r) is up to a constant determined by n(~r)

uniquely. Following the original approach of Hohenberg and Kohn accompanied by their

proof via reductio absurdum, the discussion in this theorems is restricted to non degenerate

ground states. This restriction nevertheless does not affect the presented proof for the second

theorem and can be lifted as well as for the first theorem.
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3.3.1 The HK theorem-I

It states that the external potential V (~r) is a functional of the electrons density n(~r) and,

up to an unimportant constant, uniquely determined by it. It is assumed that there exist

two external potential V (~r) and V ′(~r) which differ by more than just a trival constant.

Furthermore the assumption is made, that both potentials gives rise to the same electron

density n(~r). Clearly arising from the nature of ~V in that case there have to be two different

Hamiltonians Ĥ and Ĥ′. Further more Ψ and Ψ′ have to be different Schrödinger equations.

Finally also the energy Ê and Ê′ associated with the particular wave function differ. It

also describe the ground state particle density n(~r) of a system of interacting particles in

an external potential Vext(~r) uniquely determines the external potential Vext(~r), except for a

constant. Thus the ground state particle density determines the full Hamiltonian, except for

a constant shift of the energy. In principle, all the states including ground and excited states

of the many-body wavefuntions can be calculated. This means that the ground particles

density uniquely determines all properties of the system completely.

3.3.2 Proof of the HK theorem-I

For simplicity, here I only consider the case that the ground state of the system is non

degenerate. It can be proven that the theorem is also valid for systems with degenerate

ground states. The proof is based on minimum energy principle. Suppose there are two

different external potentials Vext(~r) and V ′ext(~r) which differ by more than a constant and

lead to the same ground state density n0(~r). The two external potentials would give two

different Hamiltonians, Ĥ and Ĥ′ which have the same ground state density Vext(~r) but would

have different ground state wavefunctions, Ψ and Ψ′, with ĤΨ = E0Ψ and Ĥ′Ψ′ = E0′Ψ′.

Since Ψ′ is not the ground state of Ĥ, it follows that

E0 < 〈Ψ′|Ĥ|Ψ′〉

< 〈Ψ′|Ĥ′|Ψ′〉+ 〈Ψ′|Ĥ − Ĥ′|Ψ′〉 (3.9)

< E0′+
∫
n0(~r)[V ext(r)− V ′ext(r)]dr

Similarly

E0′ < 〈Ψ|Ĥ′|Ψ〉

< 〈Ψ|Ĥ|Ψ〉+ 〈Ψ|Ĥ′ − Ĥ|Ψ〉 (3.10)
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< E0 +
∫
n0(~r)[V ext′(~r)− Vext(~r)]dr

Adding Eq. (3.9) and (3.10) lead to the contradiction

E0 + E0′ < E0 + E0′ (3.11)

Hence, no two different external potentials Vext(~r) can give rise to the same ground state

density n0(~r), i.e., the ground state density determines the external potential Vext(~r), except

for a constant. That is to say, there is a one-to-one mapping between the ground state

density n0(~r) and the external potential Vext(~r), although the exact formula is unknown.

3.3.3 HK theorem-II

It states that the ground state energy can be derived from the electron density by the use of

variational principle. The electron density, which provides a minimum of the ground state

energy, is therefore the exact ground state density. Orginally the second theorem has been

proved by variational principle, the proof subsequently provided a different one, namely the so

called Constrained-Search approach, introduced by Levy and Lieb. There exists a universal

funtional F [n(~r)] of the density, independent of the external potential Vext(~r), such that

the global minimum value of the energy funtional E[n(~r)] ≡
∫
n(~r)Vext(~r)dr+F [n(~r)] is the

exact ground state energy of the system and the exact ground state density n0(~r) miniminizes

this funtional. Thus the exact ground state energy and density are fully determined by the

funtional E[n(~r)].

3.3.4 Proof of the HK theorem-II

The universal functional F [n(~r)] can be written as

F [n(~r)] ≡ T [n(~r)] + Eint[n(~r)] (3.12)

where T [n(~r)] is the kinetic energy and Eint[n(~r)] is the interaction energy of the particles.

According to variational principle, for any wave function Ψ′ , the energy functional E[Ψ′]:

E[Ψ′] = 〈Ψ′|T̂ + V̂int + V̂ext|Ψ′〉 (3.13)

has its global minimum value only when Ψ′ is the ground state wave function Ψ0, with the

constraint that the total number of the particles is conserved. According to HK theorem
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I, Ψ′ must correspond to a ground state with particle density n′(~r) and external potential

V ′ext(~r), then E[Ψ′] is a functional of n′(~r) According to variational principle:

E[Ψ′]≡〈Ψ′|T̂ + V̂int + V̂ext|Ψ′〉

= E[n′(r)]

=
∫
n′(r)V ′ext(r)dr + F [n′(r)]

> E[Ψ0] (3.14)

=
∫
n0(r)d(r) + F [n0(r)] = E[n0(r)]

Thus the energy functional E[n(r)] ≡
∫
n(r)Vext(r)dr + F [n(r)] evaluated for the correct

ground state density n0(r) is indeed lower than the value of this functional for any other

density n(~r). Therefore by minimizing the total energy functional of the system with respect

to variations in the density n(~r), one would find the exact ground state density and energy

[62].

3.3.5 Advantage of Hohenberg-Kohn theorems

Hohenberg-Kohn theorems gives the relations between density and potential using variational

principle. And the ground state energy determine for only one density. That density is

ground state density. If the density is more than one which density give the minimum

energy that density is ground state density. In most of today’s applications of DFT, only

one direction of the Hohenberg–Kohn theorem is used, to find the ground state density for a

given system described by an external potential. For the other direction, the inverse problem,

it is a priori not clear if even a potential exists that leads to a given density through the

solution of the Schrödinger equation, whether for the interacting or non-interacting system,

the problem of v-representability. Specific examples of v-representable densities as well as

non-v-representable densities have been identified. So the Hohenberg-Kohn theorems must

be v-representable. We calculated all electronic properties from density.

3.3.6 Limitation of Hohenberg-Kohn theorems

Hohenberg-Kohn theorems can not described the non classical term. It can not perfectly

described the functional term. If the density is not v-representable, this theorems is not

valid.
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3.4 The Kohn-Sham equations

Kohn and Sham introduced an orbital approach for evaluating Fni[n] in 1965, which was

an important step toward quantitative modeling of electronic structure. In other words, in

order to evaluate the kinetic energy of N non interacting particles given only their density

distribution n(r), they simply found the corresponding potential, called veff (r), and used

the Schrödinger equation.

(− ~2

2M
∇2 + veff (r))ψi(r) = εiψi(r) (3.15)

Such that n(r) =
∑N

i=1 |ψ(r)|2 the states ψi here are ordered so that the energies εi are non

decreasing, and the spin index is included in i. If the εN is degenerate with εN+1(and also

at finite temperatures),fractional occupations fi are to be used n(r) =
∑∞

i=1 fi|ψ(r)|2 , but

if only spin degeneracy is involved, the result for the density is not affected. The kinetic

energy is then given by,Fni =
∑N

i=1 |〈ψi|t̂|ψi〉 =
∑N

i=1 εi −
∫
drn(r)veff (r) where t̂i is the

kinetic energy operator for the ith electron (T̂ =
∑

i t̂i).

In practice, it is the external potential of a given system which is known, not the density

distribution or the effective potential. One may find the effective potential by taking a

functional derivative of the three-term expression for FHK [n], and rearranging the terms:

veff (r) = v(r)− eϕ(r) + vxc(r) (3.16)

where we have used Equation for both the interacting and noninter- acting system. The

electrostatic potential is here

ϕ(r) = −e
∫
dr′ n(r′)
|r − r′|

(3.17)

And the exchange-correlation potential is defined as

vxc(r) =
δExc
δn(r)

(3.18)

Given a particular approximation for Exc(n), one obtains vxc(r) and can thus find veff (r)

from n(r) for a given v(r) The set of equations described above is called the KohnSham

equations of DFT [63].

The Kohn-Sham equations achieve reasonable correspondence with experiment when applied
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to single atoms. The best LDA calculations provide more accurate results than the Hartree-

Fock approximation and approach the accuracy demanded by quantum chemists; surveys

comparing computations in molecules with experimental results. Many different types of ap-

proximations have been tried to bring density functional theory into as close correspondence

with experiment as possible. For example, the generalized gradient approximations (GGA)

add extra derivative terms. The pure research problem of painstakingly finding accurate

solutions to the electronic energy of jellium thus turned out to have much more practical

importance than one might have expected from such a simplified model system. From the

quantum Monte Carlo calculations in jellium, it was possible to find the energy of the electron

gas as a function of density.

3.4.1 Solving the Kohn-Sham equations

Once we have approximated the exchange-correlation energy, we are in a position to solve

the Kohn-Sham equations. The Kohn-Sham equations have an iterative solution; they have

to be solved self-consistently. To solve the Kohn-Sham equations for a many body sys-

tem, we need to define the Hartree potential and the exchange-correlation potential, and to

define the Hartree potential and the exchange-correlation potential, we need to know the

electron density n(r). By using independent-particle methods, the KS equations provide

a way to obtain the exact density and energy of the ground state of a condensed matter

system. The KS Given that the effective KS potential VKS and the constant KS, equations

must be consistently solved. n(r) and electron density are closely linked terms. This is usu-

ally done numerically through some self-consistent iterations as shown in Figure 3.1. The

process starts with an initial electron density, usually a superposition of atomic electron

density, then the effective KS potential VKS is calculated and the KS equation is solved

with single-particle eigenvalues and wavefunctions, a new electron density is then calculated

from the wavefunctions. After this, self-consistent condition(s) is checked. Self-consistent

condition(s) can be the change of total energy or electron density from the previous iteration

or total force acting on atoms is less than some chosen small quantity, or a combination of

these individual conditions. If the self-consistency is not achieved, the calculated electron

density will be mixed with electron density from previous iterations to get a new electron

density. A new iteration will start with the new electron density. This process continues

until self-consistency is reached. After the self-consistency is reached, various quantities can
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Figure 3.1: Illustration of the self-consistent field (SCF) procedure for solving the Kohn-sham
equations.

be calculated including total energy, forces, stress, eigenvalues, electron density of states,

band structure, etc..

Solving the Kohn-Sham equation with a given Kohn-Sham potential VKS is the phase that

takes up the most time in the entire procedure. When boundary conditions are used, there

are numerous different methods for calculating the independent particle electronic states in

solids. They are basically classified into three types :

1.Plane waves.

In this method, the wave functions (eigenfunctions of the KS equations) are expanded in

a complete set of plane waves and the external potential of nuclei are replaced by pseu-

dopotentials which include effects from core electrons. Such pseudopotentials have to satisfy
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certain conditions. Most widely used pseudopotentials nowadays include norm conserving

pseudopotentials (NCPPs) and ultrasoft pseudopotentials (USPPs). In norm-conserving

pseudopotentials, five requirements should be satisfied:

The pseudo valence eigenvalues should agree with all-electron valence eigenvalues for the

chosen atomic reference configuration. The pseudo valence wavefunctions should match all-

electron valence wavefunctions beyond a chosen core radius Rc. The logarithmic derivatives

of the pseudo and the all-electron wavefunctions should agree at Rc . The integrated charge

inside Rc for each wavefunction agrees (norm-conservation) and the first energy derivative

of the logarithmic derivatives of the all-electron and pseudo wavefunctions agree at Rc , and

therefore for all r ≤ Rc .

In ultrasoft pseudopotentials, the norm-conservation condition is not required so that the

pseudo wavefunctions are much softer than pseudo wavefunctions in norm conserving pseu-

dopotentials. As a result, it significantly reduces the number of plane waves needed to expand

the wavefunctions (smaller energy cutoff for wavefunctions).

Plane waves have played an important role in the early orthogonalized plane wave (OPW) cal-

culations and are generalized to modern projector augmented wave (PAW) method. Because

of the simplicity of plane waves and pseudopotentials, computational load is significantly re-

duced in these methods and therefore it is most suitable for calculations of large systems.

In this method, forces can be easily calculated and it can be easily developed to quantum

molecular dynam- ics simulations as well as response to (small) external perturbations. How-

ever, results from plane wave methods using pseudopotentials are usually less accurate than

results from all-electron full potential methods. And great care should be taken when one

generates a pseudopotential and it should be tested to match results from all-electron cal-

culations. The most widely used codes using plane waves and pseudopotentials are plane

wave self-consistent field (now known as Quantum ESPRESSO) (PWscf), ABINIT , VASP

(which uses PAW method too).

2. Localized atomic(-like) orbitals.

The most well-known methods in this category are linear combination of atomic orbitals

(LCAO), also called tight-binding (TB) and full potential non-orthogonal local orbital (FPLO).

The basic idea of these methods is to use atomic orbitals as the basis set to expand the one-

electron wavefunction in KS equations.

In FPLO, in addition to the spherical average of the crystal potential, a so-called confining
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potential Vcon = (r/r0)
m is used to compress the long range tail of the local orbitals (wave

functions), where m is the confining potential exponent with a typical value of four, r0 =

(x0rNN/2)3/2 is a compression parameter with x0 being a dimensionless parameter and rNN

the nearest neighbor distance. Therefore, the atomic-like potential is written as

Vat(r) = −(
1

4π
)

∫
V (r −R− τ)d3r + Vcon(r) (3.19)

where the first term is the spherical average of the crystal potential mentioned above. For

systems containing atom(s) with partially filled 4f and 5f shells, the confining potential

exponent m needs to be increased to 5 or 6. In practice, the dimensionless parameter x0 is

taken as a variational parameter in the self-consistent procedure.

3. Atomic sphere methods.

Methods in the class can be considered as a combination of plane wave method and localized

atomic orbitals. It uses localized atomic orbital presentation near the nuclei and plane waves

in the interstitial region. The most widely used methods are (full potential) linear muffin-tin

orbital (LMTO) as implemented in LMTART by Dr. Savrasov and (full potential) linear

augment plane wave (LAPW) as implemented in WIEN2k.

However, to find the electron density, we must know the single electron wave functions. We

do not know these wave functions until we solve the Kohn-Sham equations. The well-known

approach to solve the Kohn-Sham equations is to start with an initial trial electron density

as illustrated in Figure 3.1. Then solve these equations using the trial electron density. After

solving the Kohn-Sham equations, we will have a set of single electron wave functions. Using

these wave functions, we can calculate the new electron density. The new electron density is

an input for the next cycle. Finally, compare the difference between the calculated electron

densities for consec- utive iterations. If the difference in electron density between consecutive

iterations is lower than an appropriately chosen convergence criterion, then the solution of

the Kohn-Sham equations is said to be self-consistent. Now the calculated electron density

is considered as the ground state electron density, and it can be used to calculate the total

energy of the system [64].
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3.5 The Exchange-Correlation Functionals

The major problem in solving the Kohn-Sham equations is that the true form of the exchange-

correlation functional is not known. Two main approximation methods have been imple-

mented to approximate the exchange correlation functional. The local density approxima-

tion (LDA) is the first approach to approximate the exchange-correlation functional in DFT

calculations. The second well known class of approximations to the Kohn-Sham exchange

correlation functional is the generalized gradient approximation (GGA). In the GGA ap-

proximation the exchange and correlation energies include the local electron density and the

local gradient in the electron density [64].

3.5.1 Local Density Approximation (LDA)

The simplest approximation to the exchange-correlation functional is the local density ap-

proximation (LDA) [65]. The local density approximation is based on the assumption that

at every point in the molecule the energy density has the value that would be given by a

homogeneous electron gas which had the same electron density r at that point. The energy

density is the energy (exchange plus correlation) per electron. Note that the LDA does

not assume that the electron density in a molecule is homogeneous (uniform); that dras-

tic situation would be true of a Thomas-Fermi molecule, which, as we said above, cannot

exist. The term local was used to contrast the method with ones in which the functional

depends not just on r but also on the gradient (first derivative) of r, the contrast apparently

arising from the assumption that a derivative is a nonlocal property. However, under the

mathematical definition above a gradient is local, and in fact DFT methods formerly called

nonlocal are now commonly designated as gradient -corrected. LDA functionals have been

largely replaced by a family representing an extension of the method, local spin density

approximation (LSDA; below) functionals. In fact, in extolling the virtues of a systematic

nonempirical ascent of the DFT Jacobs ladder, Perdew et al. slight LDA and assign to the

lowest rung LSDA functionals [66].

As a practical approximate expression forExc[n], Kohn and Sham suggested what is known

in the context of DFT as the local density approximation, or LDA:

Exc[n(r)] '
∫
drn(r)εxc(n(r))) (3.20)
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where εxc(n) is the exchangecorrelation energy per electron in a uniform electron gas of den-

sity n. This quantity is known exactly in the limit of high density, and can be computed

accurately at densities of interest, using Monte Carlo techniques (i.e. there are no free pa-

rameters). In practice one usually employs parametric formulas, which are fitted to the data

and are accurate to within ..

Note that the only difference between the resulting computational scheme and a naive mean-

field approach is the addition of the potential

vxc(r) =
d(nεxc(n))

dn
|n = n(r) (3.21)

to the electrostatic potential at the appropriate step in the selfconsistency loop. The corre-

sponding expression for the groundstate energy is:

E0 =
N∑
i=1

εi − Ees[n(r)] +

∫
drn(r)(εxc(n(r))− vxc(n(r)) (3.22)

The first term is the noninteracting energy, the second term is half of the Hartree scheme’s

double counting of the electrostatic energy, and the last term is a similar subtraction for the

exchangecorrelation energy. The LDA has been shown to give very good results for many

atomic, molec- ular and crystalline interacting electron systems, even though in these sys-

tems the density of electrons is not slowly varying [67]. The advantage of the homogeneous

electron gas model is that it is the only system where the Exc functional is known accurately.

In strictly theoretical sense the local approximation is only justified when the density is

slowly changing. However, although the densities in atoms and molecules are typ- ically

highly inhomogeneous, LDA still gives surprisingly good results. It has been found, that

LDA gives reasonably good results for equilibrium structures, harmonic frequencies and

dipole moments in molecules [65].

3.5.2 Generalized-Gradient Approximation (GGA)

As mentioned above, the LDA neglects the inhomogeneities of the real charge density which

could be very different from the HEG. The XC energy of inhomogeneous charge density can

be significantly different from the HEG result. This leads to the development of various

generalized-gradient approximations (GGAs) which include density gradient corrections and

higher spatial derivatives of the electron density and give better results than LDA in many

30



Density Functional Theory(DFT)

cases. Three most widely used GGAs are the forms proposed by Becke (B88), Perdew et

al and Perdew, Burke and Enzerhof (PBE). The definition of the XC energy functional of

GGA is the generalized form of LSDA to include corrections from density gradient n(r) as

EGGA
XC [n ↑ (r), n ↓ (r)] =

∫
n(r)εhomX (n(r))FXC(n ↑ (r), n ↓ (r), |5n ↑ (r)|, |5n ↓ (r)|, .....)dr

(3.23)

where εXC is dimensionless and εhomX (n(r)) is the exchange energy density of the unpolar-

ized HEG.FXC can be decomposed linearly into exchange contribution FX and correlation

contribution FC as FXC = FX+FC .For a detailed treatment of FX and FC in different GGAs.

In general, GGA outperforms LDA in predicting bond length and binding energy of molecules,

crystal lattice constants, and other properties, especially in systems with rapidly fluctuat-

ing charge density. GGA, on the other hand, has a tendency to overcorrect. The lattice

constants from LDA calculations correspond well with experimental data in ionic crystals,

however GGA will overestimate it. Nonetheless, in materials where electrons are confined

and strongly correlated, such as transition metal oxides and rare-earth elements and com-

pounds, both LDA and GGA function poorly. This flaw causes approximations that go

beyond LDA and GGA .

3.5.3 PBE-GGA (Perdew-Burke-Ernzerhof) Approximation

The PBE form is probably the simplest GGA functional. Hence we give it as an explicit

example. The reader is referred to other sources such as the paper on Comparison shopping

for a gradient-corrected density functional, by Perdew and Burke. The PBE functional for

exchange is given by a simple form for the enhancement factor Fx.The form is chosen with

Fx(0) = 1 (so that the local approximation is recovered) and Fx constant at large s,

Fx(s) = 1 + κ− κ/(1 + µs2/κ) (3.24)

where κ = 0.804 is chosen to satisfy the LiebOxford bound. The value of µ = 0.21951 is

chosen to recover the linear response form of the local ap- proximation, i.e. it is chosen to

cancel the term from the correlation. This may seem strange, but it is done to agree better

with quantum Monte Carlo calculations. This choice violates the known expansion at low

s given in Eq. (3.23), with the rationale of better fitting the entire functional. Correlation

takes the form of a local correlation and an additive term, both of which are dependent on
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gradients and spin polarization.

The form chosen to satisfy a number of requirements is

EGGA−PBE
c [n ↑, n ↓] =

∫
d3rn[εhomC (rs, ζ) +H(rs, ζ, t)] (3.25)

where ζ = (n ↑, n ↓)/n is the spin polarization,r s is the local value of the density parameter,

and t is a dimensionless gradient t = |∇n|/(2φκTFn).Here φ = ((1 + ζ)
2
3 + (1− ζ)

2
3 )/2 and

t is scaled by the screening wavevector kTF rather than kF . The final form is

H =
e2

a0
γφ3log(1 +

β

γ
t2

1 + At2

1 + At2 + A2t4
) (3.26)

where the factor e2/a0, with a0 the Bohr radius, is unity in atomic units. The function A is

given by [32]

A =
β

γ
[exp(

(−εhomc

γφ3 e2

a0

)− 1]−1 (3.27)
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Results and Discussion

In this work, Ni and Cd based compounds were studied by means of ab initio methods. DFT

calculations were performed based on the full-potential linearized augmented plane wave (FP-

LAPW) method as implemented in WIEN2k code [68]. The Perdew-Burke-Ernzehof (PBE)

functional [69, 70] with the Generalized Gradient Approximation (GGA) were used for the

exchange and correlation interaction. The wavefunctions of the muffin-tin model’s interstitial

regions were modified using Fourier series, whilst the wavefunctions of the model’s muffin-

tin spheres were approximated using spherical harmonic functions. We use the generalized

gradient approximation (GGA) to optimize the parameters namely, RKmax, K-Point and

lattice constant [71]. After optimization of structure, we set RKmax = 8.5 , 8.0, 7.5 and 8.0 for

the compounds Ni2NbSi , Ni2ZrGe, Cd2MnAs and Cd2MnSb respectively, where R is the smallest

muffin tin radii in the unit cell and Kmax is the biggest reciprocal lattice vector employed in the

flat wave-function expansion. The convergence of the total energy to a minimum value of 10−4 Ry

determines the convergence of self-consistency calculations, while the charge convergence criteria

was set 10−3 e. Furthermore, the number of k-points in the Brillouin zone is selected to 50000.

4.1 Structural properties of Ni-based alloys

Full Heusler compounds form two prototype structures. The regular Heusler crystallizes in a cubic

structure AlCu2Mn prototype with the space group (225, FM3̄m) and the inverse Heusler, while

in CuHg2Ti with space group (216, F43̄m). In this work, we will study the full Heusler Ni2NbSi

and Ni2ZrGe consent with AlCu2Mn type structure, where Ni atoms occupy A (0, 0, 0) and C (0.5,

0.5, 0.5) Wyckoff positions while Nb, Zr and Si, Ge atoms are respectively located at B (0.25, 0.25,
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Figure 4.1: Crystal structure of Ni2NbSi and Ni2ZrGe full-heusler alloys.

0.25) and D (0.75, 0.75, 0.75) positions. Figure 4.1 gives a representation of this configuration.

The crystal structure of both compounds Ni2NbSi and Ni2ZrGe are same aspect. The XCrySDen

software was used to draw the crystalline structure. In order to obtain ground state of Ni2NbSi

and Ni2ZrGe alloys, we firstly study the structural property using the plane-wave ultrasoft pseudo-

potential DFT method. The volume versus total energy plots of Ni2NbSi and Ni2ZrGe alloys are

shown in Figure 4.2. The most stable structure of Ni2NbSi and Ni2ZrGe is confirmed by optimizing

total energy as a function of volume for states with the appropriate lattice parameter. Figure 4.2,

depicts the change of total energy with respect to cell volume in ferromagnetic states. Lattice

constant is obtained from E-V, energy versus volume diagram where V is equilibrium volume. The

parameters we used for calculation are listed in Table 4.1.

Table 4.1: Lattice parameter used in SCF calculation and Fermi energy (eV) of Ni2NbSi and
Ni2ZrGe compounds using PBA-GGA potential.

Compounds Optimized lattice parameter (Å) Fermi energy (eV)
Ni2NbSi 5.9338 0.8790534861
Ni2ZrGe 6.1347 0.6672853688
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Figure 4.2: Energy versus volume optimization curves for (a) Ni2NbSi and (b) Ni2ZrGe .

We also determined band gap, total energy, and Fermi energy through the SCF calculation.

4.2 Band structure of Ni-based alloys

The investigation of the electronic band structure is necessary to understand the physical properties

of crystaline solids which almost completely describe optical as well as transport properties. Spin-
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Figure 4.3: Estimated Band Structure of (a) Ni2NbSi and (b) Ni2ZrGe

polarized band structure of Ni based two compounds at the 5.9338 Å and 6.1347 Å lattice constant

for both the spin-up and spin-down channels at equilibrium state along the high symmetry direction

in the first Brillouin zone are illustrated in Figure 4.3(a) the band structure of Ni2NbSi and the

Figure 4.3(b) the band structure of Ni2ZrGe respectively. Fermi level is set to zero. For the both

alloys, it’s evidant that the valence bands overlap with conduction bands in both spin-up and spin-

down band structure and the Fermi level passes through the overlapping region EF . So the band

gap is zero here.
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4.3 Density of States (DOS) of Ni-based alloys

The number of unique states that electrons can occupy at a given energy level, or the number of

electron states per unit volume per unit energy, is known as the density of states (DOS). The bulk

properties of conductive substances, such as specific heat, paramagnetic susceptibility, and other

transport phenomena, are controlled by this function.
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Figure 4.4: (a) total density of states (TDOS) and partial density of states (PDOS) of Ni2NbSi
(b) Ni (c) Nb and (d) Si atoms

For detailed investigations of the formation of energy bands, one needs to compute the density of

states (DOS) of the system. The total and partial DOS must be computed with GGA in order

to examine the electronic characteristics of materials. The total and partial densities of states for

Ni2NbSi and Ni2ZrGe are depicted in Figure 4.4 and Figure 4.5. Now, the PDOS of Ni contains

the orbital of electrons for the spin up and spin down for Ni2NbSi and Ni2ZrGe alloys are plotted

in Figure 4.4(b) and Figure 4.5(b). Similarly the PDOS of Nb and Si are also plotted in Figure

4.4(c) and Figure 4.4(d). And the PDOS of Zr and Ge are also plotted in Figure 4.5(c) and Figure

4.5(d). The upper portion displays the majority spin density, while the lower portion displays the

minority spin density. For Ni2NbSi alloys, in Figure 4.4(c) the conduction band overleps the Fermi

level and enters into the valance band region. Similarly For Ni2ZrGe alloys also the conduction

band overleps the Fermi level and enters into the valance band region. So this case indicates that

the both systems are full metallic.
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Figure 4.5: (a) total density of states (TDOS) and partial density of states (PDOS) of Ni2ZrGe
(b) Ni (c) Zr and (d) Ge atoms

4.4 Optical Properties of Ni-based alloys

The term optical property describes a material’s behavior when electromagnetic radiation (light)

is incident on the material’s surface or, in other words, how a material interacts under an incident

electromagnetic radiation. The optical properties of matter are studied in optical physics, a subfield

of optics. Different types of material show different optical properties due to differences in physical,

chemical, and mechanical characteristics. The knowledge of optical properties is very important in

various industrial as well as in scientific applications. In the selection of material for the purpose

of contactless temperature measurement devices, heat transfer methods, laser technology, etc.,

complete knowledge of optical properties of materials is necessary for efficient operation. Now, we

have calculated the optical parameters of Ni based two compounds. In order to investigate the

optical properties of Ni2NbSi and Ni2ZrGe full-Heusler compounds, we calculated its absorption

coefficient, optical conductivity, optical reflectivity, refractive index, dielectric tensor and electron

energy loss.
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4.4.1 Dielectric Function

The Dielectric Constant is a measurement of a substance’s capacity to store electrical energy in an

electric field. The dielectric constant is a complex quantity that may be represented as

ε(ω) = ε1(ω) + iε2(ω) (4.1)

where, ε1 and ε2 are the real and imaginary parts of the dielectric function. Real dielectric con-

stant respectively, (ε1(ω)) represents the degree of polarization of a material when it placed into

an electric field and imaginary dielectric function (ε2(ω)) represents the energy dissipation apti-

tude of a dielectric material. The optical response of the material to an electromagnetic field is

described by the dielectric function [73]. The real and imaginary dielectric function for Ni2NbSi

and Ni2ZrGe obtained from PBE-GGA potential in Figure 4.6(a,b). From Figure 4.6(a) we say
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Figure 4.6: Dielectric Funtion for Ni2NbSi and Ni2ZrGe (a) real (b) imaginary

that both compounds have no negative real dielectric tensors before 3 eV energy. so we use these

compound to store electric energy. After 3 eV energy , the real dielectric tensors starts to decrease

and get negative value of real dielectric tensor. For imaginary dielectric tensor in Figure 4.6(b)

gives that the imaginary dielectric tensor starts to increase and between 2 eV to 4 eV we can see

a sharp peak.

4.4.2 Optical Conductivity

Optical conductivity σ(ω) determines the ability of a medium to initiate a phenomenon of conduc-

tion as the electromagnetic radiations try to propagate through it. From Figure 4.7(a) it is clear

that, optical conductivity increases as energy increases. The energy between 0.63 eV to 1.5 eV

the conductivity starts to decrease. After the visible range region conductivity increases. At zero

energy position, we get the highest optical conductivity. Between 2.0 eV to 4.5 eV energy, we get
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Figure 4.7: Optical conductivity for Ni2NbSi and Ni2ZrGe (a) real (b) imaginary

the highest optical conductivity for both compounds. So we say that from Figure both compounds

are give the almost same behaviour. For imaginery optical conductuvity from Fig 4.7(b) we can say

that, the energy between 2.1 eV to 3 eV the conductivity starts to decrease and becomes almost zero

for the Ni2NbSi compound at point 2.5 eV. But after visible range region conductivity increases.

For zero energy position we get the highest optical conductivity for the Ni2ZrGe compound. The

conductivity is high at point 9 eV energy. From these Figure, we can say that Ni2NbSi compound

is better conductor than Ni2ZrGe compound.

4.4.3 The Absorption Coefficient

The absorption coefficient is used to calculate how far into a material light of a specific wavelength

can penetrate before being absorbed. A substance can appear transparent if it is thin enough to

barely slightly absorb light of that wavelength. If a substance is thin enough to just very faintly

absorb light of a certain wavelength, it can look transparent. When energy levels rise, metal’s

absorption coefficient rises as well. Generally, metal conductors have a high absorption coefficient.

Because light with energy below the band gap does not have enough energy to drive an electron

from the valence band into the conduction band, semiconductor materials show a sharp edge in their

absorption coefficient. As a result, there is no absorption of this light. The absorption coefficient

is not constant for photons with energies above the band gap, although it is still substantially

dependent on wavelength. The likelihood of absorbing a photon is proportional to the probability

of a photon and an electron interacting in such a way that they migrate from one energy band to

the next. As the photon’s energy rises, interactions with it aren’t limited to electrons with energies

around the band gap. As a result, more electrons may interact with the photon, causing it to be

absorbed [72]. In Figure 4.8 we see that the absorption coefficent of Ni2NbSi and Ni2ZrGe heusler

compound. The range of photon energies for visible light is 1.63 eV to 3.26 eV. For both Ni2NbSi
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and Ni2ZrGe compounds the absorption coefficient is very weak in the visible light region. So we can

say that these alloys cannot absorb visible light. But after the visible light region, the absorptivity

starts to increase. so both compounds absorbs mainly UV light. As the energy increases the
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Figure 4.8: Optical absorption coefficient for Ni2NbSi and Ni2ZrGe

absorptivity also increases in the region. From the Figure 4.8, we can see that Ni2NbSi gives a

higher absorption coefficent than Ni2ZrGe. so we can say that, Ni2NbSi absorbs more light. For

melatic compound the absorptivity increases with the energy. Optical absorption provides essential

information on the electronic properties of metalic compounds.

4.4.4 Refractive Index

The ratio of the speed of light in a vacuum to the speed of light in the second medium of larger

density is used to compute the refractive index (also known as the Index of Refraction). The letter
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Figure 4.9: Refractive index for Ni2NbSi and Ni2ZrGe

’n’ is the most popular symbol for the refractive index variable. The greater the deflection (or

refraction) of a light beam entering or exiting a material, the higher its refractive index. We are
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aware that a material’s refractive index indicates how quickly light passes through it. The frequency

of light traveling through a medium influences its refractive index (to some extent), with the highest

frequencies having the greatest values of n. The correlation between the refractive index and photon

energy is shown in Figure 4.9. From these Figure we can see that both compounds Ni2NbSi and

Ni2ZrGe gives the almost same results. The refractivity is maximum at 0 eV energy and minimum

between 10 to 12 eV energy. After 12 eV the refractivity index continuously decrease.

4.4.5 Optical Reflectivity

The reflactance of a material is measured when light is incident on the surface of the material. This

is a measurement of a surface’s ability to reflect radiation, or the reflectance of a material layer that

is thick enough to have a constant reflectance regardless of thickness. Each substance’s potential

as a perfect absorber is determined by the reflectance and reflectivity spectra. The reflectivity of

light from a surface depends upon the angle of incidence and the plane of polarization of the light.

The normal incidence reflectivity is dependent upon the indices of refraction of the two media.

Analysing the Figure 4.10, we see that at zero energy position the reflectivity is highest but after
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Figure 4.10: Optical Reflectivity for Ni2NbSi and Ni2ZrGe

zero position reflectivity starts to decrease and becomes zero at 2 eV position for the Ni2NbSi.

After 2 eV position the reflectivity again starts to increase for both compounds. As the energy

increase the reflectivity increase after 2 eV energy. So from this property, we can say that Ni2NbSi

and Ni2ZrGe are the good metallic reflector in Figure 4.10 is representing the optical reflectivity of

Ni2NbSi and Ni2ZrGe compounds.

4.4.6 Electron Energy Loss

Energy loss function is the energy lost by a fast-moving electron as it travel through a substance.

It’s a very significant phase since it offers information about the sample or material’s structure and
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Figure 4.11: Electron energy loss for Ni2NbSi and Ni2ZrGe

chemical composition. The electronic energy loss function of a material can be extended from the

dielectric function to further characterize the energy loss when electrons flow through a uniform

dielectric. From Figure 4.11, we can see that the graph is almost the same for both materials. After

12 eV energy , we have the highest energy loss of about 0.25.

4.5 Structural Properties of Cd-based alloys

we will study the full Heusler Cd2MnAs and Cd2MnSb compounds with their structure, where Cd

Figure 4.12: Crystal structure of Cd2MnAs and Cd2MnSb full-heuslor alloys .

atoms occupy A (0, 0, 0) and C (0.5, 0.5, 0.5) Wyckoff positions while (Mn, As) and (Mn, Sb)

atoms are respectively located at B (0.25, 0.25, 0.25) and D (0.75, 0.75, 0.75) positions. Four face-
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Figure 4.13: Energy versus volume optimization curves of (a) Cd2MnAs and (b) Cd2MnSb full-
heuslor alloys .

centered-cubic (FCC) lattices are interpenetrating in the full-Heusler compound. Figure 4.12 shows

a visual representation of this configuration. By maximizing total energy as a function of volume

for states with the lattice parameter are 6.90 Å and 7.15 Å, the most stable structure of Cd2MnAs

and Cd2MnSb are confirmed. Figure 4.13 depicts the change in total energy in ferromagnetic states

with respect to cell volume. The energy against volume (E-V) diagram, where V is the equilibrium

volume, is used to determine the lattice constant. Calculated lattice constant and fermi energy are

summarized in Table 4.2.

Table 4.2: Lattice parameter used in SCF calculation and Fermi energy of Cd2MnAs and Cd2MnSb
compounds using PBA-GGA potential.

Compounds Optimized lattice parameter (Å) Fermi energy (eV)
Cd2MnAs 6.90 0.4654020161
Cd2MnSb 7.15 0.4545148167

4.6 Band Structure of Cd-based alloys

Understanding the physical characteristics of crystalline solids, which nearly entirely define optical

as well as transport aspects, requires an analysis of the electronic band structure. The calculation

is done by defining highly symmetric points on the edge of the Brillouin zone with sampling path

of Γ-X-W-Γ-L-W and W-L-Γ-X-W-K. For both,the compound’s energy band lies between -5 eV to

5 eV. The bands that coincide below the Fermi level are referred as the valence band while the

band above the reference Fermi line is the conduction band. For these alloys, in order that the

valence bands overlap with conduction bands structure, and the Fermi level passes through the

overlapping region EF . In this case, the band gap is zero. The majority spin channel and minority

spin channel both have zero flip gaps, proving that these alloys are both truly complete metallic.

We may conclude that Cd2MnAs and Cd2MnSb are both complete metallic Heusler alloys based
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on figure 4.14. These compounds can be used to make electrical lines and other electrical devices

since good metal conductors have a zero band gap.
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Figure 4.14: Estimated Band Structure of (a,b) Cd2MnAs and (c,d) Cd2MnSb

4.7 Density of states (DOS) of Cd-based alloys

The density of states (DOS) is essentially the number of different states that electrons are permitted

to occupy at a given energy level, i.e. the number of electron states per unit volume per unit energy.
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Figure 4.15: (a) total density of states (TDOS) and partial density of states (PDOS) of Cd2MnAs
(b) Cd (c) Mn and (d) AS atoms

For the study of electronic properties of materials, it is necessary to calculated the total density of

states (TDOS) and partial density states (PDOS) with GGA. The corresponding total and partial

density of states for Cd2MnAs and Cd2MnSb are illustrated in Figure 4.15 and Figure 4.16. Now,

the PDOS of Cd contains the orbital of electrons for the spin up and spin down for Cd2MnAs and

Cd2MnSb alloys are plotted in Figure 4.15(b) and Figure 4.16(b). Similarly the PDOS of Mn and

As are also plotted in Figure 4.15(c) and Figure 4.15(d). And the PDOS of Zr and Ge are also

plotted in Figure 4.16(c) and Figure 4.16(d). The majority spin density is shown in the upper

portion, while the minority spin density is shown in the lower portion. For Cd2MnAs alloys, in

Figure 4.15(c) the conduction band overleps the Fermi level and enters into the valance band region.

Similarly For Cd2MnAs alloys also the conduction band overleps the Fermi level and enters into

the valance band region. Therefore, this situation suggests that both systems are full Heusler.

4.8 Magnetic Properties of Cd-based alloys

The magnetic ordering of the Cd2MnAs and Cd2MnSb is shown by the spin-polarized computations.

We estimated the magnetic moment contributions from the interstitial region as well as the partial

magnetic moments of the Cd, Mn, and (AS, Sb) atoms, as shown in Table 4.3. The majority of the

total magnetic moment is produced by Cd atoms. The partial moments of Mn and (As, Sb) are
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Figure 4.16: (a) total density of states (TDOS) and partial density of states (PDOS) of Cd2MnSb
(b) Cd (c) Mn and (d) AS atoms

Table 4.3: Total spin magnetic moment of Cd2MnAs and Cd2MnSb in PBA-GGA approach

Compounds MCd/µB MMn/µB MAs/µB Mint/µB Mtot/µB Magnet type
Cd2MnAs -0.05024 3.97162 0.01841 0.10705 3.99661 ferromagnetic
Cd2MnSb 0.13706 4.11715 0.00789 0.13706 4.19641 ferromagnetic

antiparallel to Cd atoms, proving the ferromagnetic nature of the Cd2MnAs and Cd2MnSb alloys.

The calculated total magnetic moment for entire Heusler alloys with L21 structure is an integer

quantity in accordance with the Slater-Pauling rule. The Cd atoms benefit from this antiparallel

alignment, which results in total magnetic moments of 3.99 µB and 4.19 µB respectively.

4.9 Optical properties of Cd-based alloys

Solid-state materials exhibit a variety of optical characteristics. In this section, we go through

the optical characteristics of Cd2MnAs and Cd2MnSb, including their electron energy loss, optical

conductivity, optical reflectivity, refractive index, and dielectric tensor. In previous chapter, we

have already discussed about the basic concepts of all these optical properties. So in this chapter

we will discuss only the basic configuration of these two systems.
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4.9.1 Dielectric Function

The dielectric function can be used to describe how an electromagnetic field affects a material’s

optical response. The real and imaginary dielectric function for Cd2MnAs and Cd2MnSb were
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Figure 4.17: Dielectric Funtion for Cd2MnAs and Cd2MnSb (a) real (b) imaginary

obtained from PBE-GGA potential in Figure 4.17(a, b) where energy plotted in the X-direction,

real and imaginary dielectric function ploted in Y-directin. In Figure 4.17(a) represent the curve

for real dielectric function. As can be seen in Figure, the curves in these compounds are opposite

configurations in the infrared region. After an energy of 3.8 eV the curves are almost same for

both compounds. In Figure 4.17(b) we can see that the imaginary dielectric tensor is high in

the infrared region for both compounds. After the visible region the imaginary dielectric tensor

decreasees abruptly. In UV region, the value of imaginary dielectric tensor is almost zero.

4.9.2 Optical Conductivity

Optical conductivity is a material property that describes the interaction between the induced cur-

rent density in the materials and the magnitude of the inducing electric field for arbitrarily selected

frequencies. The optical conductivity (real and imaginary) is along with its energy is illustrated

in Figure 4.18. From the real optical conductivity curve, it is obvious that the conductivity of

Cd2MnSb is very high and Cd2MnAs is zero at infrared region. In UV region the conductivity

curves are almost same for both alloys. From imaginary conductivity curves, it is clear that the

imaginary conductivity is very high at point 0 eV and 3.2 eV for Cd2MnAs and Cd2MnSb com-

pounds respectively. After 4 eV energy the imaginary conductivity starts to decrease for both

compounds. So we can say that Cd2MnSb is better conductor than Cd2MnAs compound.
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Figure 4.18: Optical Conductivity for Cd2MnAs and Cd2MnSb (a) real (b) imaginary

4.9.3 Absorption Coefficient and Electron Energy Loss

In Figure 4.19(a), we can see that the absorption coefficient of Cd2MnAs and Cd2MnSb compounds.

Absorption coefficient are almost same for both compounds.The value of absorption coefficient
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Figure 4.19: Optical Absorption Coefficient (a) and Electron Energy Loss (b) for Cd2MnAs and
Cd2MnSb

promptily increases when the incident energy becomes higher. In the UV region Cd2MnAs and

Cd2MnSb have peak valus of 5.1 eV and 4.3 eV respectively. Hence both alloys mainly absorb

UV light. So we can say that Cd2MnAs absorbs more light than Cd2MnSb compound. Electron

energy loss is graphically represent in Figure 4.19(b). Both Cd2MnAs and Cd2MnSb compounds

have their largest peaks in the UV region. And in infrared region their performance is woefully

lacking.

4.9.4 Optical Refractivity and Refractive Index

Material reflectivity is impotant in determining how much light a meterial can reflect in relation

to the amount of light. It is exposed to Figure 4.20(a) shows that the reflectivity is higest at 0 eV
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Figure 4.20: Optical Reflectivity (a) and Refractive Index (b) for Cd2MnAs and Cd2MnSb

energy position for Cd2MnSb compound bt after zero position the reflectivity starts to decrease.

For Cd2MnAs compound at first the reflectivity is high but after 7.9 eV energy reflectivity starts

to decrease and become zero at 10.8 eV energy. The Optical reflectivity is very high it represents

the strong metallic characteristic of the Cd2MnAs and Cd2MnSb compounds. In Figure 4.20(b)

represent the refractive index vs energy curve. Refractive index is known that the refractive indices

are inversely related to the bandgap, if refractive index increases corresponding bandgap decreases.

It can be seen that in the lower energy range, there are higher valus of refractive index for both

the compounds. This indicates that the metallurgical behavior of both alloys is enhanced.
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Chapter 5

Conclusions

In this work, we have studied the structural properties of Ni and Cd based full Heusler alloys using

FP-LAPW method as implemented in WIEN2k code with GGA-PBE exchange correlation to in-

vestigate their structural, electronic, magnetic, and optical properties. The equillibrium functional

constant is found to be 5.93 Å, 6.13 Å, 6.90 Å and 7.15 Å for Ni2NbSi, Ni2ZrGe, Cd2MnAs and

Cd2MnSb respectively. To investigate the electronic properties the diagrams of spin-polarized band

structure of Ni and Cd based compounds and DOS, PDOS were plotted. Also found that these

compounds for the spin-up and spin-down have no band gap that confirms their metallic properties.

The density of states also revealed the metallic nature of these compound. The magnetic moment

of Cd based two system are around 4 µB , indicating the ferromagnetic contribution of the alloys.

In this work, also calculated optical properties, the real and imaginary parts of dielectric function,

reflectivity, absorption coefficient and optical conductivity. Curve of the real part of dielectric func-

tion versus energy show that there is metallic property in very low energies. At the end, we hope

that this effort will be helpful and inspirational to researchers working in this field by emphasizing

the merit of further research on all of these substances.
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Appendix

The dielectric function describes the responce of a material to the application of an alternating

electric field at different photon energy. There are two part of dielectric function; one is real and

another is imaginary part. The imaginary part of the dielectric function ignoring all intra-band

transitions would be obtained as:

Imε
[inter]
ij (ω) =

h2e2

πm2
eω

2

∑
n

∫
dk〈Ψcn

k |p
i|Ψvn

k 〉〈Ψ
vn
k |p

β|Ψcn
k 〉σ(Ecnk − E

vn
k − ω) (5.1)

Which includes the summation of inter-band transitions from occupied valence levels with agent-

state |Ψv
k〉 and agent-value Evnk to unoccupied conduction levels with agent-state |Ψcn

k 〉 and agent-

value Ecnk where p stands for momentum operator. The other quantities such as the refraction,

absorption, reflection indexes and etc. can be obtained using the real or imaginary parts of the

dielectric function. With the help of the imaginary part of dielectric tensor, one can determine the

corresponding real part via the Kramers–Kronig relations:

Reε
[inter]
ij (ω) = σij

2

π
P

∫ ∞
0

ω̄Imεij(ω)

ω̄2 − ω2
(5.2)

In which, P indicates the principal value of integral. On the other hand, the contribution of metallic

intera-band transitions is obtained as follows

Imε
[inter]
ij (ω) =

Γω2
pl,ij

ω(ω2 + Γ2)
, Reε

[inter]
ij (ω) =

ω2
pl,ij

ω(ω2 + Γ2)
ω2
pl (5.3)

In this equation, Γ represents the lifetime broadening in Drude model, ωpl denotes plasma frequency

and n indicates electron density. The total dielectric function including all interband and intra-

band transitions is obtained as follows:

ε(ω) = ε
[inter]
ij (ω) + ε

[intra]
ij (ω) (5.4)
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Appendix

The energy loss of electron through a fast moving throughout the material is described by Eloss

function which related to dielectric function as follows:

(Eloss) = Lij(ω) = −Im{ 1

εij(ω)
} =

Imεij
(Reεij)2 + (Imεij)2

(5.5)

These interactions include intraband and interband transitions, plasmon excitations (free electron

oscillations), phonon excitations, inner shell ionization and etc. The energy in which the curve

transfers from negative to positive values in the diagram of real part of dielectric function corre-

sponds to the plasmon energy. Another calculated optical parameter is coefficient:

R(ω) = Rij(ω) =

[
(Reεij + iImεij)

2 − 1

(Reεij + iImεij)2 + 1

]
(5.6)

Optical absorption coefficient A(ω) is defined as follows in terms of real and imaginary parts of

dielectric function:

Aij(ω) =

√
2ω

c

[
(Reε2ij + Imε2ij)−Reεij

] 1
2

(5.7)

Absorption is related to transition between occupied and unoc- cupied bands due to light and

electron interaction. Optical conductivity is another quantity depending on the interband and

intraband transitions. Optical conductivity is calculated in terms of Imε(ω) as follows:

δij(ω) =
ωij
4π

Imεij(ω) (5.8)
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List of Abbreviations

BZ : Brillouin Zone

DFT : Density Functional Theory

DOS : Density of States

FLL : Fully Localized Limit

GGA : Generalized Gradient Approximation

HK : Hohenberg-Kohn

HM : Half-Metallic

KS : Kohn-Sham

LSDA : Local Spin Density Approximation

PDOS : Partial Density of States

PBE : Perdew Burke Ernzerhof

RMT : Radius Muffin Tin

RHF : Restricted Hartree Fock

XC : Exchange correlation

53



Bibliography

[1] PH Galanakis. Dederichs, and n. papanikolaou. Phys. Rev. B, 66(17):174429, 2002.
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