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Abstract

Recent energy deficits have influenced an intensification of demand for renewable

energy sources. The utilization of these energy sources necessitates the availabil-

ity of substances that possess the capability of absorbing visible wavelengths of

light. The electronic and optical properties, along with the structure stability of

Rb2NaScCl6, a double perovskite devoid of toxicity, were determined in our study.

The DFT calculation utilizing the WIEN2k program is implemented in our study.

The stability and legality of the structure being an ideal cubic symmetry along with

space group Fm3̄m have been determined through the utilisation of the tolerance

factor and octahedral factor. The precise value for the band-gap is identified as

being 3.9 electron volts, while the absorption coefficient has been observed to fall

within the ultra-violet range. The compound’s simulated properties were analysed

under different pressure conditions. Both electronic and optical properties shows a

significant change under different pressure. The results show that the band-gap got

broader up to 20 GPa, but then it started to get smaller as the pressure went up.

Additionally, there was a shift in absorption from the ultra-violet to visible range of

wave length as pressure increased over 20 GPa. With appropriate modification, the

material exhibits promising potential for utilization in diverse sectors, particularly

in the realm of new energy production applications.
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Chapter 1

Introduction

People are flocking toward new technologies as civilisation advances. The majority

of technological advancements are dependent on the uninterrupted supply of energy.

Our energy resources are becoming more and more scarce. Future society will need

energy sources that are renewable and favorable to the environment. The power

sector has identified renewable energy sources as the way forward since they can

replace traditional fossil fuels with carbon-based counterparts while supplying an

unbroken flow of electricity [1, 2]. Hence, success in the field of renewable energy

is closely related to the goal of a carbon-neutral energy economy. Technologies in-

cluding solar cells, water-splitting, and thermoelectricity have got the attraction to

scientific association recently. For those technologies, various compounds are being

developed while taking efficiency, usability, and environmental impact into consid-

eration. Due to its effectiveness and multidimensional applications, founded both

theoretically and computationally, double perovskite is currently one of them.

Throughout the course of the last ten years, double perovskite has garnered signifi-

cant interest from both a theoretical and an experimental perspective. In addition

to its practical applications, double perovskite systems offer insight into the physics

behind the emergence of functional characteristics. Double perovskite materials

have gained a lot of curiosity lately due to its potential applications in a variety of
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disciplines, including LEDs (light-emitting diodes), photovoltaic cell, sensors, fuel

cells, LASERS, thermoelectricity, catalysis, radiation detectors, and a wide variety

of other fields and industries [3–9].

The investigation of double perovskite was initiated in the vicinity of the 1950s [10].

The term double perovskite comes from from the name perovskite. A double per-

ovskite exhibit the recurrence of perovskite unit cell. Solar cells and other photo-

voltaic technologies work well with lead-based perovskites [11, 12]. Lead perovskite

solar cells are used a lot in photovoltaic because they are easy to make and have a

high power conversion efficiency of more than 20%. Unfortunately, lead had to be re-

placed because it was dangerous and unstable [13]. The double perovskites work well

in a variety of fields and have a lot of stability with non-toxic materials that are good

for the environment. Lead-free double perovskites, such as Rb2ScInI6, Rb2AgCrCl6,

Cs2AgBiBr6 et cetera have demonstrated high efficiencies in renewable technology

like photovoltaic cells [14–16]. Several double perovskites such as Gd2ZnTiO6:Mn4+,

NaLaMgWO6:Eu3+, Ca2LaSbO6:Sm3+ exhibit the potential for use in optical devices

such as LEDs when doped [17–19]. These materials exhibit a variety of magnetic be-

haviors, including ferromagnetism, antiferromagnetism and ferrimagnetism, depend-

ing on the metal ions. For example, La2NiMnO6 and Sr2FeMoO6 are ferromagnetic

and exhibit magneto-resistance, making them promising candidates for spintronic

applications [20, 21]. Some double perovskite compounds exhibit superconducting

properties at low temperatures. For instance, double-perovskite bismuth oxides have

demonstrated high efficiency in the field of superconductivity [22].

To understand the electronic, optical and other characteristics of a double perovskite

is essential to comprehend its usefulness in various fields. However, conducting ex-

perimental research requires a significant amount of resources and financial support.

Density functional theory based computational investigations can point the way for

experimental endeavours and, in many instances, provide a greater insight into the

synthesized, associated features, and application of materials. Electronic, optical,

elastic, thermoelectronic and many other property can be determined based on den-

sity functional theory [23–26] accurately, and several observation shows its validity

by comparing with experimental data.
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Our study determines the electronic and optical characteristics of Rb2NaScCl6 dou-

ble perovskite compound. To do our calculation, we use the WIEN2k program,

which uses the first principle density functional theory. We examine the numerous

ways we might use our compound, like for application of energy consumption.

1.1 Structure Description

The general structure of double perovskites is A2B
′B′′C6, where C could be halogen

or oxygen molecule [27, 28]. Here A is an alkaline-earth or rare-earth ion. The one

or both cation sites B′ and B′′ are occupied with transition-metal. The structure of

perovskite compounds has similarities with the structure of double perovskite having

ABC3 crystal structures. Intervening oxygen/halogen bridges every B′ and B′′ atom

pair, thus forming alternating B′C6 and B′′C6 octahedra. This type of compound

most probably forms perfectly cubic structures with the space group Fm3̄m (space

group no: 225).

In our study, we work with Rb2NaScCl6 double perovskite compound. The poly-

hedral structure representation of Rb2NaScCl6 double perovskite provided in figure

1.1.

Figure 1.1: Polyhedral presentation of the crystal structure Rb2NaScCl6

The structure contains 40 atoms, 143 lattice points, 258 bonds and 35 polyhedral.

In this a single unit cell, the A sites are filled with 8 rubidium (Rb) atoms, the B′
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and B′′ sites are filled with 4 sodium (Na) and 4 scandium (Sc) atoms. There are

24 chlorine (Cl) atoms which forms octahedra with Na and Sc atoms. The volume

of the unit cell is 1173.548970 Å3. The crystal structure is a cubic structure with

space-group 225 Fm3̄m. The stability of our compound is demonstrate with toler-

ance factor ( τ ) as well as octahedral factor ( µ). And these components can be

represents by the following equations [29,30]:

τ =
Ta + To

√
2(

T
b
′+T

b
′′

2
) + To

(1.1)

µ =
Tb′ + Tb′′

2To
(1.2)

Here, Ta, Tb′ , Tb′′ , and To represents the ionic radius of A, B′ , B′′ and C compo-

nents of double perovskite. For a stable double perovskite, the value of tolerance

factor is between 0.71 to 1, while the value of octahedral factor is between 0.42 to

0.75 [31, 32]. Furthermore, research has demonstrated that materials exhibiting a

tolerance factor ranging from 0.89 to 1.00 indicate a cubic structure [33]. For the

material Rb2NaScCl6 double perovskite, the ionic radius of Rb, Na, Sc, Cl is used

1.72 Å, 1.02 Å, 0.745 Åand 1.81 Årespectively. The values of the tolerance factor

and octahedral factor have been determined to be 0.927 and 0.487 respectively. The

value ensures that the material exhibiting the form of cubic structure having the

space group of Fm3̄m, which corresponds to space group number 225. The atom’s

coordination and lattice parameters have displayed in table 1.1 and 1.2 correspond-

ingly.

Table 1.1: Table of lattice parameters

a (Å) b (Å) c (Å) alpha (α) beta (β) gamma (γ)

10.54793 10.54793 10.54793 90.0000° 90.0000° 90.0000°
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Table 1.2: Position of atoms

ATOM NUMBER X Y Z

Rb 1 0.75000 0.25000 0.25000

Rb 2 0.25000 0.75000 0.75000

Na 1 0.00000 0.00000 0.00000

Sc 1 0.50000 0.00000 0.00000

Cl 1 0.50000 0.23704 0.00000

Cl 2 0.50000 0.76296 0.00000

Cl 3 0.76296 0.50000 0.00000

Cl 4 0.23704 0.50000 0.00000

Cl 5 0.00000 0.50000 0.23704

Cl 6 0.00000 0.50000 0.76296

1.2 Organization of Chapters

Apart from this introductory chapter, this thesis contains four other chapters. We

will discuss about electronic and optical properties of a substance in chapter two. Af-

ter that, chapter three discusses density functional theory. The renowned Schrödinger

equation will be our starting point on this chapter, and we will examine how it breaks

down for many body system. We will observe how some of the best scientists ap-

proach this issue utilizing different theorems to get at the contemporary density

functional theory. We shall later observe its use in various sectors. In chapter four,

we will demonstrate the estimation of electronic and optical properties of our ma-

terial. We will know the procedure of calculation, and the result of our work. And

finally, in chapter five, we will summarize our work and see how we can use our

material in various scopes, like energy consumption.

5



Chapter 2

Electronic and Optical Properties

2.1 Overview

The electronic properties of a material are related to the manner in which electrons

behave within it. These properties can greatly impact the material’s physical and

chemical characteristics. This characteristics of a material are influenced by the

interactions between electrons and atomic nuclei within that material. Materials

possess several crucial electronic properties such as electrical conductivity, resistivity

et cetera. This electronic properties of a compound are intricately linked to its

electronic band structure, density of states, and other related factors. The optical

properties of substances pertain to how they behave when they come into contact

with light. Properties such as absorption, reflection, and refraction, among others,

can be noticed. In this section, we will be discussing some optical properties. This

chapter will cover topics such as band structure, density of states, and various optical

properties.
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2.2 Band-Structure

The arrangement of energy levels or bands that are occupied by electrons in a

material is referred to as band-structure. These bands develop as a result of the

periodic potential that the electrons in a crystalline material encounter. When

atoms combine to create a crystal, their energy levels divide into discrete levels with

small spacings. The permitted energy levels in a solid create bands of states that are

isolated from one another by spaces where there are no energy states. The energy

scale where no electron state can remain is referred as the band-gap. Other names

for it are “Energy gap” and “Fobiddrn gap”. The energy difference between the top

of the valance band (VB) and the bottom of the conduction band (CB) is another

way to describe it [34].

The VB is occupied with the valance electrons from an atom. These valence electrons

have no effect on conductivity. The conduction band is either empty or occupied

with electrons that have leapt from the valance band. The energy level of it is higher

than the valance band. The conductivity of a metal is influenced by the electrons

which are situated on conduction band. If we denote band-gap energy in momentum

space with Eg(k), then

The conduction band energy:

Ec(k) = Eg(k) +
ℏ2k2

2me

(2.1)

The valance band energy:

Ev(k) = −ℏ2k2

2mh

(2.2)

Here k, ℏ, me, mh represent the wave vector, reduced planck constant, effective

mass of electron and effective mass of hole respectively. Figure 2.1 displays the

arrangement of VB and CV in the energy band-gap diagram. There must be suf-

ficient energy for an electron to move from VB to CB. The electron becomes free

to move inside the crystal once it has crossed the band-gap. In the crystal, this

7
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Figure 2.1: Energy band-gap diagram

electron will act as a charge carrier. The bigger the band-gap, the more energy an

electron needs to move in CV and operate as charge carrier. Therefore, both the

electrical conductivity and the resistivity of a compound are greatly influenced by

the band-gap.

2.2.1 Conductor, Insulator, Semiconductor

Based on the differences in band-gaps, the material can be divided into three types:

conductor, semiconductor, and insulator.

The term “conductor” refers to a material that has no band-gap at all. So in con-

ductor the VB and CV are being overlapped. As a result, the valance electrons can

shift freely in the crystal lattice. Thermal excitation to the conductor metal will

increase the vibration and collision of electrons. So the conductivity will decrease

and resistivity will increase if we heat a conductor material. Iron, graphite, water,

and human body are good examples of conductors.

Large band-gaps with more than 3 eV are a characteristic of insulator. So the VB

and CB are separated with huge amount of energy. Thermal stimulation of the

insulator causes it to become more conductive and less resistive. Insulators include

plastic, rubber, dry air, and glass.

A semiconductor’s band-gap, on the other hand, is quite narrow. It is approximately

from 0.1 eV to 3 eV. However, there a a few semiconductor materials that have large

8



Electronic and Optical Properties

band-gap than this range. The band-gap of semiconductor is between conductor

and insulator. This property gives them conductivity between conductor and in-

sulator [35]. So unlike insulator, there need a little thermal or other excitation to

increase the conductivity of semiconductor. Doping a semiconductor material can

also change the conductivity. Semiconductor materials include silicon, germanium,

indium, and gallium.

In figure 2.2, we show a diagram showing how the valance band and conduction

band are distributed in an insulator, semiconductor, and conductor.

E
n
e
r
g
y Conduction Band

Valance Band

Insulator

E
n
e
r
g
y

Conduction Band

Valance Band

Semiconductor

E
n
e
r
g
y

Valance Band

Conductor

Figure 2.2: Energy band-gap diagram for insulator, semiconductor and conductor

2.2.2 Direct and Indirect Band-Gap

According to the location of top of the VB and the bottom of the CV, the band-

gap can be further divided into two parts: direct band-gap, indirect band-gap. For

the first case, band-gap, the highest point of the VB and lower point of the CV

are situated in identical momentum space. The transition process in direct band-

gap materials conserves both energy and momentum. There will be photon-assisted

transitions, and that kind of transition is essentially vertical in the energy/wave-

vector diagram. The recombination process can be triggered by a little change in

momentum. Amorphous silicon and various III-V materials, such as indium arsenite

and gallium arsenide, are examples of direct band-gap materials.

The highest point of the VB and lower point of the CV are located in distinct mo-
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mentum spaces in indirect band-gap. Since the wave vector must be altered for the

transition, the momentum is not conserved in an indirect band-gap, but the energy

is. Hence, a photon-associated transition in an indirect band-gap must be accom-

panied by the emission or absorption of a phonon. There will be phonon-assisted

transitions, and that kind of transition is essentially horizontal in the energy/wave-

vector diagram. There must be a significant change in momentum for the recom-

bination process to take place. Samples of indirect band-gap compounds include

crystalline silicon, germanium, some III-V materials like aluminum antimonide, et

ceteraetera.

A diagram for direct and indirect band-gap gaps is displayed on figure 2.3:

(a) (b)

Figure 2.3: (a) Direct and (b) indirect band-gap diagram

2.2.3 Applications

Understanding a compound’s band-band-gap is crucial in the evaluation for its

prospective applications. As we already know both the electrical conductivity and

the resistivity of a compound are greatly influenced by the band-gap. Semiconductor

compound’s band-gap is a critical factor for figuring out how well they can absorb

as well as emit light, also the range of wavelengths in which they can operate. LEDs

and laser diodes both emit photons that have energy levels that are similar to the

band-gap of a semiconductor they are constructed from. Increasing the band-gap of

an LED or LASER will result in a change of color. In both cases, the color of light

can be shifted by increasing its energy [36]. Photovoltaic cells can be made from
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various materials, and the band-gap of each material differs. For electricity to be

generated, a photovoltaic cell requires a photon to hit it with an energy that exceeds

the band-gap of compound it’s made of. In addition, it is beneficial to construct

other renewable energy devices for high power applications, such as transducers, and

so on.

2.3 Density of States

A significant notion in the electrical structure of materials is the density of states

(DOS). It details the variety of electronic states that can exist in a material at

different energy levels. DOS specifically indicates the quantity of electrons on a

given energy range per unit volume of the substance. It can be written as for the

nth band like [37]:

D(E) =

∫
[dK⃗]δ(E − Enk) (2.3)

Here, D(E) denotes the DOS at energy E. And:

∫
[dK⃗] =

2

(2π)n

∫
dK (2.4)

Say, for 1D, the DOS will be:

D(E) =

∫
[dK⃗]δ(E − Ek)

=
2

(2π)

∫
dKδ(E − Ek)

=
2

π

∫
dEK

|dEK

dK
|
δ(E − Ek)

=
2

π

1

|dEK

dK
|

(2.5)

We can calculate the DOS for 2D and 3D using this formula.

Knowing the DOS of a structure us in many ways. In condensed matter physics,

electrons are confined to a crystal lattice and their energy levels form bands. Energy

bands are a fundamental concept that help to explain the electronic properties of

materials. The more information about energy band is given in section 2.2. The
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density of states allows us to examine how electrons are distributed across various

bands. It is an important tools which is used by scientist to understand how electrons

perform in substance like metals, semiconductors, insulators. More specifically, elec-

trical conductivity of a material is ascertained from the DOS at Fermi level, which

refers the maximum occupied energy level at absolute zero temperature [38]. Due

to their high DOS at the Fermi level, metals are excellent conductors of electricity

as they have huge number of free electrons available. Semi-conductor has low DOS

around the Fermi level. As a matter of tiny band-gap in semiconductors, DOS rises

sharply as the energy level near the lowest point of CV and falls as the energy level

approaches the highest point of VB. Comparing with this two, insulator has wide

band-gap with low DOS close to Fermi level, that hinders electron movement and

leads to high resistivity.

The DOS can be used to understand how a material interacts with light in the con-

text of its optical properties. When light contacts with a substance, it can excite

electrons above the Fermi level, moving them from occupied to unoccupied states.

The likelihood of this excitation is influenced by both the energy divergence in the

midst of the initial and last states and the DOS at the incident photon energy. For

instance, there will be a large number of states accessible for the electrons to be

stimulated into if a material has a high DOS at the energy of the incident photons.

Since more light at that energy will be absorbed by the substance, the absorption

will be stronger. A substance will absorb less light and look transparent at that

energy if the DOS is low because there are fewer possible states. This diagram in

figure 2.4 aims to compare the density of states in three different materials: a metal,

semi-metal, along with semiconductor or insulator. In each case, Ef denotes the

Fermi level. In conclusion, energy bands and DOS are ideas that are connected

and that shed light on the electrical characteristics of materials. The behavior of

electrons in substance for a various applications can be predicted and controlled by

scientists and engineers by understanding how the DOS varies with energy within

various energy bands.
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Figure 2.4: A DOS diagram of (a) conductor, (b) semiconductor, along with (c) insulator

2.3.1 Partial Density of States

From section 2.4 we know that the DOS stands for the quantity of electronic states

per unit energy. It’s useful for identifying the material’s electrical and optical char-

acteristics. But it never reveal the distribution of electronic states among the ma-

terial’s atoms and orbitals. Partial density of states (PDOS) enters the picture in

this situation.

PDOS examine how different atoms or orbitals contribute to the overall DOS. By

dividing the overall DOS into contributions from specific atoms and atomic orbitals,

it gives a additional thorough description of a material’s electronic structure.

Let’s think of a compound made of two different atom types, for instance. The two

types of atoms’ effects to the total DOS can be distinguished using the PDOS anal-

ysis. The relationship between the proportionate amounts of each type of atom and

the compound’s electronic characteristics may then be understood using this knowl-

edge. In parallel, it can be used to examine how various orbitals affect a material’s

electrical characteristics. This property is really beneficial in various ways. Like,

in a semiconductor, we can use PDOS to study the valence and conduction bands

separately. By doing this, we can identify which states are responsible for absorbing
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and emitting light. This information is useful for designing semiconductors with

specific properties and applications.

2.4 Optical Properties

2.4.1 Complex Dielectric Function

The complex dielectric function is a complex quantity that characterizes how a

material reacts to an electromagnetic field that is applied to it. It is commonly

represented by the symbol ϵ and referred to as the complex relative permittivity.It

is possible to determine all optical properties of materials from it. The dielectric

function is dependent on frequency of electron gas and can be written as ϵ(w). It

has two parts real and imaginary and they can be expressed with the relation [39]:

ϵ(w) = ϵ1(w) + iϵ2(w) (2.6)

Here ϵ1(w) and ϵ2(w) represent real and imaginary part respectively. The real part

describes the ability of the material to store energy in an electromagnetic field, while

the imaginary part describes the loss of energy due to absorption or scattering by

the material. The formula for calculating ϵ2(w) with cubic symmetry substance [40]:

ϵ2(w) =
8

2πw2
Σnn′

∫
BZ

|Pnn′(k)|2 dSk

∇wnn′(k)
(2.7)

And ϵ1(w) can be found using Kramers–Kronig relation which is [41,42]:

ϵ1(w) = 1 +
2

π
P

∫ ∞

0

w′ϵ2(w
′)

w′2 − w2
dw′ (2.8)

In equation 2.7, wnn′ is the energy difference between the two states, dSk is an

energy surface with constant value, and Pnn′ s the dipole matrix element between

the initial and final states and in equation 2.8. In 2.8, P denotes the principal part

of the integral. The dielectric function is a useful tool for calculating various optical

properties, as we will explore in the following sections.
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2.4.2 Absorption Coefficient

The absorption coefficient quantifies the degree to which a substance absorbs elec-

tromagnetic radiation, including light. The “absorption coefficient” is the percentage

of radiation absorption per unit distance through a material to the amount of ra-

diation that hits the material. The absorption coefficient depends on a number of

things, like material’s composition, structure, thickness, along with frequency or

wavelength of the radiation that hits it. Generally, materials that are more thick

or have electrons that are more tightly bound are likely to absorb radiation more

effectively than materials that are less thick or have electrons that are more spread

out.

Mathematically, the absorption coefficient which is generally denoted as α can be

defined simply from Beer–Lambert’s law formula [43]:

α =
1

l
ln(

PO

P
) =

2kw

c
=

2.303A

l
(2.9)

Here PO, P , l, A represents incident intensity, transmitted intensity, distance trav-

eled through the medium (in cm) and absorbance respectively. The absorption

coefficient is greatly influenced by the band-gap of the substance. Equation 2.10

shows the dependency of α with band-gap energy Eg [44].

α = K
(hϑ− Eg)

n

hϑ
(2.10)

Here, K is a constant. The value of n varies depending on the kind of the transition.

The absorption coefficient can be represented by the dielectric constant using the

equation 2.11 [45].

α(w) =

√
2w

c

[{
ϵ1(w)

2 + ϵ2(w)
2
} 1

2 − ϵ(w)2
] 1

2 (2.11)

The absorption coefficient holds significant importance in various fields, including

spectroscopy, imaging, and optoelectronics. Measuring the absorption coefficient

at various wavelengths can offer valuable insights into the electronic and atomic
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structure of compound. Additionally, it’s crucial to control absorption coefficient by

selecting appropriate materials and designing devices to achieve high efficiency for

the prosperity of optical equipment, photodetectors, and solar cell.

2.4.3 Refractive Index

The term used to describe the extent to which the speed of light is reduced when

it travels through a material is known as the refractive index. The definition of the

term is the ratio of speed of light at a given substance to its speed in vacuum. A

straightforward mathematical formula can be used to express the refractive index,

which is typically denoted by the symbol µ is:

µ =
Vo
V

(2.12)

Here, V represents speed of light in substance and Vo represents speed of light

in space (3 × 108ms−1). The relationship between the refractive index n(w) as a

function of frequency and the dielectric constant can be expressed through equation

2.13, as stated in reference [45].

n(w) =

√[{
ϵ21 + ϵ22

} 1
2 + ϵ1(w)

2

√
2

(2.13)

Refractive index controls both the amount of light bending (or refraction) that occurs

when light travels through a material and the angle at which light is reflected to its

outermost layer. A substance’s refractive index is influenced by its chemical make-

up, crystal structure, and additional elements like pressure and temperature. There

is another parameter known as complex refractive index which is also a parameter

that characterizes the way in which light is bent when it traverses a substance. As

we know, the refractive index typically refers to a real number that is determined

solely by the characteristics of the material. However, the complex refractive index

is a more comprehensive value that consists of both a real and imaginary component.
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The complex refractive index can be expressed by the formula [46]:

C̄ = A(w) + iB(w) = ϵ
1
2 (2.14)

Here, C,A,B, ϵ represent to complex refractive index, real part, imaginary part,

dielectric function respectively. The real and imaginary can be determined by the

formula:

A =
1

2
[ϵ1(w)

2 + ϵ2(w)
2 + ϵ1(w)]

1
2 (2.15)

B =
1

2
[ϵ1(w)

2 + ϵ2(w)
2 − ϵ1(w)]

1
2 (2.16)

The refractive index is essential to the creation optical equipment, including lenses,

prisms, and fibre optics. Manipulating the path of light, creating images, focusing

or dispersing light, and transmitting it over a wide area with minimal loss is possible

with the governing of refractive index for various materials. The refractive index

plays an essential part in determining colour of materials since it influences the

collaboration of light with them.

2.4.4 Optical Reflectivity

The percentage of incident light that is reflected from a material’s surface is referred

to as optical reflectivity. It is described as the proportion of reflected radiation

intensity to incident radiation intensity. It can be measured by the formula [46]:

D(w) =
∣∣C̄ − 1

C̄ + 1

∣∣ (2.17)

Here, D,C represent reflectivity and complex refractive index respectively. The

equation 2.18 shows how the optical reflectivity can be directly represented by the

dielectric constant, as stated in reference [45].

R(w) =
∣∣∣√ϵ1(w) + iϵ2(w)− 1√

ϵ1(w) + iϵ2(w)− 1

∣∣∣2 (2.18)

The optical reflectivity is influenced by various factors like material’s composition,
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structure, and surface properties. Additionally, wavelength as well as angle of the

incident radiation also play a significant role. Materials that have smooth and

shiny surfaces generally have higher reflectivity compared to those with difficult or

textured surfaces. Optical reflectivity finds its applications in various fields like

mirror, and also the development of materials for use in photovoltaics, sensing,

and nano-photonics. It is affordable to alter the motion and movement of light,

improve light-matter encounters, and develop fresh optical effects by governing the

reflectivity of various materials.
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Chapter 3

Density Functional Theory

3.1 Overview

Computational methods have now become an essential aspect of the scientific world,

particularly in the calculation of issues. Computers and numerical approaches are

crucial for issues involving enormous quantities of particles, data, and so on that

cannot be solved analytically. Furthermore, it necessitates a large amount of re-

sources or financial support for the experiment.

DFT is a type of ab initio method that is often referred to as a computational

quantum mechanical modeling method. The method is well-known at the mat-

ter of quantum chemistry, condensed matter physics, materials science et cetera.

The application of this method starts with remedying the many-body Schrödinger

equation problem. However, DFT is more than just another method to solve the

Schrödinger equation. DFT provides an entirely distinct approach to any interact-

ing problem, translating it perfectly to more simple non-interacting problem. This

methodology is broadly utilized for resolving a variety of issues, with the electronic

structure problem being the most common [47]. In DFT, the electron density is used

as the fundamental factor, instead of the wave-function. Another method for solv-

ing the many-body Schrödinger equation is the Hartree-Fock approach, that uses
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wave-functions to describe the electronic figure of atoms and substance. However,

this methods has several drawbacks, including a high cost of calculation time for

investigating big systems. But DFT has demonstrated superior accuracy at a re-

duced computing cost, making it superior to all other approaches. This facts makes

DFT the most useful method to analyze electronic structure. Walter Kohn with his

co-workers developed this “Density functional theory” and find out the way of using

the electron density to resolve the Schrödinger equation. For his timeworn work,

he got novel prize in 1998 [48]. The chapter describes their work in broad strokes,

beginning with fundamental quantum physics, its issues, and how DFT resolves

them.

3.2 The Schrödinger Equation

In 1925, Erwin Schrödinger postulated the Schrödinger equation that governs the

wave-function of quantum mechanical system, that was published the later year of

1926 [49]. The simple form of the non-relativistic Schrödinger equation:

Hψ = Eψ (3.1)

Here, H is the Hamiltonian operator, ψ is the eigen-function or wave-function, and

E is the Energy eigen-value. The Hamiltonian contains the information of kinetic

(T ) and potential (V ) energy for all particles of the system. For a single particle, it

is expressed by the following equation:

H = T + V =
P 2

2M
+ V (3.2)

Here P is the momentum operator which can be expressed as:

P = −iℏ∇ (3.3)

In 3-D cartesian form, the ∇ is:

∇ =
∂

∂x
+

∂

∂y
+

∂

∂z
(3.4)
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So for a single particle, the time-independent Schrödinger equation become:

Eψ = − ℏ2

2M
∇2ψ + V ψ (3.5)

And using the Energy operator as:

E = iℏ
∂

∂T
(3.6)

The time-dependent Schrödinger equation becomes:

iℏ
∂

∂T
ψ = − ℏ2

2M
∇2ψ + V ψ (3.7)

There are several well-known examples, such as a particle in a box or a simple har-

monic oscillator, in which the Hamiltonian can be expressed in a straightforward

manner, and the Schrodinger equation can be handled precisely. However, system

with large number of molecule is complicated. For example, a Hamiltonian operator

for a system consisting of consisting of Ni number of atoms of species i with atomic

number Zi [50]:

H = −ℏ2

2

∑
i

∇2
R⃗i

Mi

− ℏ2

2

∑
i

∇2
r⃗i

me

− 1

4πϵ0

∑
i,j

e2Zi

|R⃗i − r⃗j|
+

1

8πϵ0

∑
i ̸=j

e2

|r⃗i − r⃗j|
+

1

8πϵ0

∑
i ̸=j

e2ZiZj

|R⃗i − R⃗j|

(3.8)

In this equation Ri and Mi are the position and mass of nuclei i respectively, and

ri and me are position and mass of electron i respectively. The first two terms of

the right hand side describe the kinetic energy of nuclei and electrons. The next

three terms describe the potential energy of the system. This potential energy aris-

ing from the attraction between electron-nucleus, electron-electron, nucleus-nucleus

interaction. It is quite a mass to try to find a solution for this kind of system, as we

need to consider every single particle interaction in the system. As Paul Dirac [51]

once told that we fully understand the basic physical laws that make up a huge sec-

tion of physics. But hardest part is using these rules correctly to solve complicated

equations that be solved quickly. Even if the rules that govern the problem are easy
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to understand, it is very hard to figure out how to turn them into solutions that

work.

For one particle or electron, a perfect analytical approach is feasible. One possible

way of solving the many-body issue could be a numerical solution. The numerical

solution is possible, but the problem is with a large number of variables, which

is 3N for the N number of particles involved in the wave-function ψ. As Hartree

said [52], there can be a huge amount of data needed to fully describe a system

with many factors. In fact, there are 78 different factors that need to be set for just

one wave-function of neutral Iron. Even if we only looked at ten values, we would

still need more than 1078 entries, and that’s assuming that symmetry could cut this

number down in some way. Simply put, there aren’t sufficient atoms through the

solar system to make enough paper for a table like this. So, it’s clear that advanced

math skills are needed to deal with these kinds of complicated processes. Also,there

are trouble with interpretation. As Feynman said [52], not only is it hard to solve

the equations in quantum physics, but it’s also hard to understand what the answer

means. So, the major problem in quantum mechanical system of many particles like

electron can be summarize as follow:

• Large number of variables.

• Lack of easy interpretation.

• The electron-electron correlations.

3.3 The Wave-Function

The word wave-function (ψ) was used several times in the previous section. As a

result, and in order to better understand what follows, a deeper inspection of the

wave-function is taken. Below, we will see different characteristics of the wave-

function:

• The wave-function ψ, which contains all the information about the particle’s
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state, is a function of ψ = ψ(r⃗, t). For N particles, the wave-function is simply:

ψ = ψ(r⃗1, r⃗2, r⃗3, ........., r⃗N , t) (3.9)

It is a single value, generally complex function and finite everywhere.

• Basically, ψ(r⃗, t) is the probability amplitude of finding a particle in position

r⃗ and time t. If ψ = ψ(r⃗, t) is large at any point, the probability of finding the

particle in there is large and vice-versa.

• The square of wave-function is the probability of finding a particle in position

r⃗ and time t [53]. Mathematically, it can be present like:

|ψ(r⃗, t)|2 = ψ∗ψ (3.10)

The square of wave-function is also known as probability density.

• For N particles where the wave-function is the function of ψ(r⃗1, .., r⃗N , t) even

if we change the positions of two particles, the probability density will remain

unchanged. So:

|ψ(r⃗1, r⃗2, .., r⃗i, r⃗j..., r⃗N , t)|2 = |ψ(r⃗1, r⃗2, .., r⃗j, r⃗i..., r⃗N , t)|2 (3.11)

What happens there is that during a particle exchange, the wave-function only

behave in one of two ways. The first is a symmetrical wave-function. In this

case, the particles exchange does not alter as a result of the exchange. This is

equivalent to bosons. They are the particles with an integer or zero spin. The

alternative possibility is an anti-symmetrical wave-function. In this case, when

the particles exchange, they change the sign. This is equivalent to fermions.

They are the particles with half-integer spin [54,55]. Only electrons, which are

classified as fermions, are of interest in the current work. The anti-symmetric

fermion wave-function is what leads to the Pauli principle, which asserts that

no two electrons can occupy the same state at the same time and when we

talk about “state”, we are referring to the orbital and spin components of the
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wave-function [56].

For simplicity, we will use time-independent wave-function from now

on.

• The probability of finding particles in a volume element is:

|ψ(r⃗1, r⃗2, r⃗3, ....., r⃗N)|2dr⃗1dr⃗2dr⃗3....dr⃗N (3.12)

As all particles must be found somewhere in space,the normalization condition

of the wave-function gives us:

∫
dr⃗1

∫
dr⃗2

∫
dr⃗3.....

∫
dr⃗N |ψ(r⃗1, r⃗2, r⃗3, ....., r⃗N)|2 = 1 (3.13)

So the wave-function is square-integral and continuous everywhere [57].

• The expectation value of the appropriate observable for a wave-function can be

obtained by first calculating the expectation values of the operators associated

with that wave-function [58]. So, for an operator A(r⃗1, r⃗2, r⃗3, ....., r⃗N), we can

express it as:

Â = ⟨A⟩ =
∫
dr⃗1

∫
dr⃗2

∫
dr⃗3.....

∫
dr⃗Nψ

∗(r⃗1, r⃗2, r⃗3, ....., r⃗N)

A(r⃗1, r⃗2, r⃗3, ....., r⃗N)ψ(r⃗1, r⃗2, r⃗3, ....., r⃗N)

(3.14)

3.4 Born-Oppenheimer Approximation

The simple form of time-independent Schrödinger equation having “e” electrons and

“n” nuclei is:

Eψ(r⃗1, r⃗2, ..., r⃗e, R⃗1, R⃗2, ..., R⃗n) = Hψ(r⃗1, r⃗2, ..., r⃗e, R⃗1, R⃗2, ..., R⃗n) (3.15)

Here, r⃗ and R⃗ describe the position of electron and nuclei respectively. The exact

form of Hamiltonian is given in equation (3.8). The weight of a nuclei is significantly

greater than that of an electron. It is possible to think of the entire nuclear wave-

function as an incoherent superposition of individual wave packets. The individual
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nuclear wave packets are often highly localised since the nuclear masses are normally

large enough. Where they move, potential has a sufficiently large arc of curvature.

Atomic nuclei can therefore be regarded as classical particles [59]. So, it needs more

energy for nucleus to move with respect to electron. In other words:

1. Based on the standpoint of an electron, the locations of nuclei are considered

to be stationary.

2. Based on the standpoint of atomic nuclei, the locations of electrons are updated

instantaneously.

On the base of this characteristics, Born and Oppenheimer prefer for the segregation

of nuclear motion from electronic motion. On the timeline of electronic transitions,

it is possible to state that the base movement can be disregarded, indicating that

it has no bearing on these changes [60]. This kind of separation is called Born-

Oppenheimer approximation. On this approximation, the position of nuclei is fixed,

but position of electron is not. As a result, the kinetic energy term for nuclei in

equation (3.8) become zero and nuclear nuclear interaction does not change. So the

total Hamiltonian is replaced by electronic Hamiltonian, which is:

Hele = −ℏ2

2

∑
i

∇2
r⃗i

me

− 1

4πϵ0

∑
i,j

e2Zi

|R⃗i − r⃗j|
+

1

8πϵ0

∑
i ̸=j

e2

|r⃗i − r⃗j|
(3.16)

On the left hand side of the equation, the first, second, third term indicate the

kinetic term(T̂ ), nucleus-electron attraction(V̂ ) and electron-electron repulsion(Û)

respectively. This equation is simpler than equation (3.8). The sole input required

for the(T̂ ) and the (Û) is the electron number. However, the nucleus-electron at-

traction term depends on the system. When there are no external magnetic or

electrical fields, the expectation value of V̂ is also frequently written as the external

potential Vext [58]. So we can say the external potential is the only element of the

electronic Hamiltonian that is dependent on the atomic or molecular system. Af-

ter learning about Vext, we must understand the system’s wave-function. However,

we can accomplish this for a very small system using our knowledge. Additional

approximations must be made to find conclusion for larger systems.
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3.5 The Hartree and Hartree-Fock Approximation

The Hartree and Hartree-Fock approximation are methods in quantum mechanics

used to approximate the behavior of a many-particle arrangement, like electrons in

an atom.

The strategy put forth by Hartree (1928) can be regarded as the initial solution to

the many-electron problem. He asserted that we may view the wave-functions of

multiple electrons can be derived straightforwardly from one electron orbital. He

applies self-consistent field(HSCF) to support his assertion [61]. According to his

theory, the system treats each particle as if it were traversing the mean field created

by all the rest of the particles, instead of direct interaction between them. In other

words, electric field that an electron experiences is caused by both the nucleus’s

core potential and the field that the other electrons have formed. By assuming a

total wave-function in a shape a product of the following, the HSCF equations can

be deduced using a variational principle [62](This reference [63] serves as a helpful

resource for the basic ideas of principles of variational calculus):

Φ(r⃗) =
N∏
i=1

ϕi(r⃗i) (3.17)

Because it offers a comparatively easy method for estimating the characteristics

of huge systems of interacting particles, this approximation is frequently helpful.

However, in this approximation, electrons are considered to be distinguishable. But

electrons are not distinguishable. They are indistinguishable fermion and follow

Pauli exclusion principle. This approximation does not follow the principle of anti-

symmetry of the wave-function [64, 65]. Also, it can be erroneous for systems with

strong interactions.

By taking into account the fact that particles are indistinguishable fermions or

bosons subjected to the Pauli exclusion principle, the Hartree-Fock approximation

goes a step further. It also implies that the wave-function used to describe the

system’s state be either symmetric or antisymmetric.The method takes into consid-

eration these symmetry constraints through generating a single Slater determinant

wave-function that characterizes the actions of all the particles in the system. So
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the wave-function become [66,67]:

ΦHF (r⃗1, r⃗2, ..., r⃗N) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(1) ϕ2(1) ϕ3(1) . . . ϕN(1)

ϕ1(2) ϕ2(2) ϕ3(2) . . . ϕN(2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕ1(N) ϕ2(N) ϕ3(N) . . . ϕN(N)

∣∣∣∣∣∣∣∣∣∣∣∣
= SD{ϕ1(1)ϕ2(2)ϕ3(3)......ϕN(N)}

(3.18)

Here ϕi(j) indicates the ith electron’s spin orbital, which is made up of both spin

and spatial components. Where j denotes the spatial and spin coordinates of elec-

tron j, that has been compressed into a variable. The root of N is normalization

factor. This formula ensures that wave-function flips its signature as the coordinates

of 2 electrons are swapped out. Also, it disappears if two electrons have the same

coordinates or if two of the electrons have the same wave-function.

The Hartree and Hartree-Fock approximations ignore any effects of electron cor-

relation by assuming that electrons move independently of one another. Actually,

electrons are not autonomous; rather, they engage in Coulombic repulsion and ex-

change interactions with one another. When these interactions are ignored, predic-

tions of molecular attributes like bond lengths, bond angles, and energy may be

inaccurate. The scalability of the Hartree and Hartree-Fock approximations is still

another drawback. For larger molecules, these techniques become computationally

expensive, making it challenging to forecast the electrical structure of complicated

systems. The Hartree-Fock technique also implies an inference that electron wave-

function might be adequately characterized by a solo determinant, which may not

necessarily be true for multi-reference platforms in which electronic wave-function

is considerably influenced by multiple configurations.

3.6 The Electron Density

In previous sections, we observed the challenges involved in solving the Schrödinger

equation for larger structures. Scientists needed to come up with an approximation

or model for wave-function that will give logical outcome. When establishing such a
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model, it’s worth to remember that wave-function is not observable directly. Instead,

we can measure is the probability that N electrons at some particular set of position

(r⃗1, ...., r⃗N). Also, we need to remember that all electrons are identical. So we can

not level them as electron 1 or electron N, but we could figure out the probability

of any order or set of N electrons being in the coordinates r⃗1 to r⃗N . Keeping this

factors in mind, the electron density which is the fundamental parameter for DFT

can be calculated like [68]:

n(r⃗) = N
∑∫

dx⃗2....

∫
dx⃗Nψ

∗(x1, x2, ...., xN)ψ(x1, x2, ...., xN) (3.19)

The equation relates to the wave-function, which takes into account both spin and

spatial coordinates. Specifically, the integral in the equation denotes the probabil-

ity of detecting an electron with any spin within a given volume element dr⃗1. As

electrons are identical, multiplying the integral by N gives the probability of dis-

covering any electron in that region. The wave-function ψ(x1, x2, ...., xN) represents

the presence of other electrons with random spin and spatial coordinates [68].

By integrating the electron density, we can easily find number of electrons overall.

N =

∫
dr⃗n(r⃗) (3.20)

It renders density a good choice for how quantum physics should be put together. In

upcoming sections, we will see how the electron density is a distinctive characteristic

of the external potential.

3.7 Thomas-Fermi Theorem

Many people have looked into the subject of explaining the density of a assembly

with multiple electrons, which led to the so-called density functional theory. The

first exploration has done by Llewellyn Thomas and Enrico Fermi in 1927, which

is known as Thomas-Fermi model [69]. The model helps to descrive the electronic

structure of many election system. It was made in a semi-classical way soon after the

Schrodinger equation was made. It’s a semi-classical approach since it borrows some
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ideas from quantum mechanics. But the rest of the ideas don’t use quantum physics.

Instead, they can be operated with regular function. Unlike the wave-function-based

approach, this formulation was completely based on electronic density and is seen as

a precursor to the modern DFT. The total energy of a system, within the Thomas-

Fermi model, is given as a functional of density like ETF [n(r⃗)]. The Thomas-Fermi

energy functional composed of three terms, is expressed as follow:

ETF = X

∫
n(r⃗)

5
3dr⃗ +

∫
n(r⃗)Vext(r⃗)d(r⃗) +

1

2

∫ ∫
n(r⃗)n(r⃗′)

|r⃗ − r⃗′|
dr⃗dr⃗′ (3.21)

The initial phrase is the electronic kinetic energy of a system of electrons in a uniform

electron gas that do not interact with each other. We can obtain this by integrating

the kinetic energy density of a homogeneous electron gas to t0[n(r⃗)] as:

TTF =

∫
t0[n(r⃗)]dr⃗ (3.22)

t0[n(r⃗)] is obtained by summing all the free-electron energy states ϵ = P 2

2M
Up to the

Fermi wave vector PF = [3π2n(r⃗)]
1
3 given by:

t0[n(r⃗)] =
2

2π2

∫ PF

0

P 2

2M
NPdP (3.23)

The term NP leads to the density of allowed states in reciprocal space given by
4πP 2V 2

h3 . This gives us the result for X as:

X =
3

10
∗ (3π2)

2
3 (3.24)

The second term represents the classical electrostatic energy of attraction between

nuclei and electron. Here Vext(r⃗) is the classic coulomb potential arising from the

nuclei, given by the following expression:

Vext(r⃗) = −
N∑
i=1

Zi

|r⃗ − R⃗i|
(3.25)

And finally the third term in the energy functional represent the electron-electron

interaction of the system. It is approximated by the classical coulomb repulsion
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between electrons. This is also known as Hartree energy.

To obtain the ground state density of a system, the Thomas-Fermi equation must

be minimized subjected to the constraint that the number of electron is conserved.

This type of constraint minimization problem can be solved by using Lagrange

multiplayer. Say, the minimization of a functional A[X], subjected to the constraint

B[X], leads to the stationary condition:

δ(A[X]− αB[X]) = 0 (3.26)

Here α is a constant which is known as Lagrange multiplayer. This minimization

leads to the solution of corresponding Euler equation:

δA[X]

δX
− α

δB[X]

δX
(3.27)

Applying this above formula to the Thomas-Fermi model, it will give us the station-

ary condition:

δ{ETF [n(r⃗)]− α(

∫
n(r⃗)dr⃗ −N} = 0 (3.28)

This yields the so-called Thomas-Fermi equation as:

5

3
Xn(r⃗)

2
3 + Vext(r⃗) +

∫
n(r⃗′)

|r⃗ − r⃗′|
dr⃗′ (3.29)

This above equation can be solved using iterative methods to obtain the ground

state density. Thomas-Fermi model differs from other models because it is simple,

easy to understand, and works for large of temperatures as well as pressures. With

this model, we can use density to figure out the estimated term for kinetic energy.

In orbital-free DFT, this formula for kinetic energy within Thomas-Fermi theory

is also used as a part of better density approximations for kinetic energy. Though

Thomas-Fermi theory contains all the necessary ingredients which paved the way to

modern DFT, it has many shortcoming as well. And those shortcomings are:

• It tell how atoms will stick together. So, this idea be made up of molecules

and solids.
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• The estimation of kinetic energy is done in a rudimentary manner. Kinetic

energy accounts for a substantial portion of the overall energy. So even small

mistakes can add up to big problems.

• Oversimplified descriptions of how electrons interact with each other, which

don’t take into account many quantum effects.

• The correlation effect is neglected completely.

3.8 Hohenberg-Kohn Theorems

When the Thomas-Fermi approach was first conceptualized, it was thought that the

energy could be declared solely by means of its electronic density. It took more than

three decades to offer a convincing argument for the validity of this idea, despite the

fact that it seemed reasonable at the time. In 1964, Hohenberg and Kohn introduced

theorems that established a strong logical basis for the preceding concepts, which

they also proved. The idea of DFT is built upon 2 essential theorems provided by

Walter Kohn and Pierre Hohenberg. This theorems are known as Hohenberg–Kohn

theorems [70,71]. The theorems with their validity are given below.

3.8.1 Theorem 1

The Hohenberg-Kohn 1st theorem is:

The ground state of energy E from Schrödinger equation in a presence of

external potential V (r⃗) is a unique functional of electron density n(r⃗).

According to the first theorem, the ground-state density and the external potential

correspond one to one. Since the external potential is fixed, the Hamiltonian hence

the wave-function ψ is fixed by n(r⃗).The evidence in support of this theorem is

straightforward. Consider the ground states of two N-electron systems that are

characterised by 2 external potentials Va(R⃗) and Vb(R⃗). These potentials differ from

each other by more than just an additive constant. The corresponding Hamiltonians
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with Schrödinger equation are given by:

Ha = T̂ + Û +
∑
i

Va(R⃗i) (3.30)

Hb = T̂ + Û +
∑
i

Vb(R⃗i) (3.31)

Here, on the the right hand side in both equations, first part is the kinetic energy

part which can define as:

T̂ = −1

2

∑
i

∇2
i (3.32)

And the second part is from the electron-electron repulsion. It can define as:

Û =
1

2

∑
i ̸=j

1

rij
(3.33)

The third part is external potential, which is different in both equations and makes

the Hamiltonians different too. The Hamiltonians are corresponds with two different

wave-function ψa, ψb and ground state energy Ea, Eb, where Ea ̸= Eb.

Haψa = Eaψa;Hbψb = Ebψb (3.34)

We assume that two wave-function ψa, ψb(which is our trial wave-function) yield the

same density. Using the variational principle, one can write:

Ea =
〈
ψa|Ha|ψa

〉
<

〈
ψb|Ha|ψb

〉
(3.35)

Here, the final section is able to be extended as:

〈
ψb|Ha|ψb

〉
=

〈
ψb|Ha|ψb

〉
+
〈
ψb|Ha −Hb|ψb

〉
= Eb +

∫
d3r⃗n(r⃗)[Va(r⃗)− Vb(r⃗)]

(3.36)

Thus, one has the result:

Ea < Eb +

∫
d3r⃗n(r⃗)[Va(r⃗)− Vb(r⃗)] (3.37)
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Interchange the suffixes, 2 and 1, gives the result:

Eb < Ea +

∫
d3r⃗n(r⃗)[Vb(r⃗)− Va(r⃗)] (3.38)

If we sum equation (3.37) and (3.38), the both second term of the right hand side

will cancel each other. So, we will get the expression:

Ea + Eb < Eb + Ea (3.39)

Clearly, this is an impossible expression. Thus, we can say that the energy associated

with a specific external potential is a distinct functional of density.

3.8.2 Theorem 2

The 2nd Hohenberg-Kohn theorem is:

The electron density that minimizes the energy of the overall functional is

the true electronic density, corresponding to the full solution of Schrödinger

equation.

According to the second theorem, it is feasible to ascertain the energy of the ground

state based on the number of electrons by utilizing the variational method. By

minimizing the system energy with varying electron density at a given external

potential, we can reach the ground state energy. In the context of DFT, the principle

known as the variational principle is applied, whereby the electron density that

results in the lowest system energy is referred to as the ground-state electron density.

To prove the statement second theorem, we need to consider the variational principle.

The variational principle is useful for obtaining accurate upper bounds to the ground-

state energy [72]. To obtain the ground-state energy of a system, one can minimize

the energy functional with respect to the trial wave-function. Trial wave-function can

be any physically acceptable function that satisfies appropriate boundary conditions.

For a many-electron system, the ground-state energy can be expressed as a functional
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of the electron density:

E[n(r⃗)] = G[n(r⃗)] +

∫
V (r⃗)n(r⃗)dr⃗ (3.40)

The energy functional can be divided into two parts: the first part is the energy of

the electrons in the external potential, and the second part is a “universal functional”

G[n(r⃗)] that depends only on the electron density and doesn’t depend on Vext. The

universal functional is important because it encapsulates all the information about

the interactions between the electrons. In other words, if we know the electron

density n(r⃗), we can calculate the value of the universal functional G[n(r⃗)], and this

will tell us everything we need to know about how the electrons interact with each

other. In equation, G[n(r⃗)] can be expressed as:

G[n(r⃗)] = T̂ + Û (3.41)

The true electron density no(r⃗) corresponds to the minimum of this energy func-

tional, that is:

E[no(r⃗)] = min{E[n(r⃗)]} (3.42)

Now suppose that we have a trial density np(r), which is different from the true

density. We can express the total energy as follows:

E[np(r⃗)] = G[np(r⃗)] +

∫
V (r⃗)np(r⃗)dr⃗ (3.43)

Since np(r) is not the true density, it must have higher energy than the true density.

That is:

E[np(r⃗)]− E[no(r⃗)] = G[np(r⃗)]−G[no(r⃗)] +

∫
V (r⃗)[np(r⃗)− no(r⃗)]dr⃗ (3.44)

Since no(r) corresponds to the minimum of the energy functional, we have:

G[np(r⃗)]−G[no(r⃗)] ≥ 0 (3.45)

34



Density Functional Theory

So,

E[np(r⃗)]− E[no(r⃗)] ≥
∫
V (r⃗)[np(r⃗)− no(r⃗)]dr⃗ (3.46)

This expression shows that for any trial density np(r), the difference between its

energy and the true ground-state energy is bounded below by the integral of the

difference between the trial density and the true density, multiplied by the external

potential. The minimum of this difference is achieved only when the trial density

matches the true density, that is, np(r) = no(r). Therefore, we can conclude that the

true electronic density corresponds to the comprehensive solution of the Schrodinger

equation, which is the electron density that minimises the energy of the overall

functional.

The equation (3.40) can be expanded as:

E[n] =

∫
dr⃗Vext(r⃗)n(r⃗) +

e2

8πϵ0

∫
dr⃗dr⃗′

n(r⃗)n(r⃗′)

|r⃗ − r⃗′|
+ T [n] + Exc[n] (3.47)

Where:

T [n] =
ℏ2

2me

∫
dr⃗dr⃗′∇r⃗∇r⃗′n1(r⃗, r⃗

′)|(r⃗=r⃗′) (3.48)

Exc[n] =
ℏ2

2me

∫
dr⃗dr⃗′

C2(r⃗, r⃗
′)

|r⃗ − r⃗′|
(3.49)

Here, n1(r⃗, r⃗
′)is one-particle density matrix and C2(r⃗, r⃗

′) is two particle correlation

function. And "xc" means exchange-correlation. Exc[n] includes all quantum me-

chanical effects which are not included in previous terms.

3.8.3 Advantage and Disadvantage

With the help of these theorems, it is possible to calculate all the ground and excited

states of many-body wave-functions. Because n(r⃗) has a single effect on external

potential, it also has a single effect on the ground state wave-function, which could

be found from computing the full Schrodinger equation for many bodies. It also

implies, density of the ground particles entirely and exclusively influences all system

attributes. The Hamiltonian resembles the electronic Hamilton operator described
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in the formula (3.16), which was the subject of Hohenberg and Kohn’s initial in-

vestigation because it involved an electron gas. The advantage of Hohenberg–Kohn

theorems is that it make the process of resolving the Schrödinger equation simpler

by shifting the focus from finding a function of 3N variables (the wave-function) to

a function of three variables (the electron density). The Hohenberg-Kohn theorem

utilizes the variational principle to establish the connections between potential and

density.

Unfortunately, Hohenberg and Kohn’s framework is precise, yet it is not very useful

in practical calculations. Hohenberg and Kohn together could not offer any way to

find the proper electronic density [73]. As there is no explicit formula linking the

kinetic energy to the electronic density at this point, determining it accurately is

the main challenge. The Laplacian of the one-body density matrix, which is not

directly related to the density itself, must be known in order to calculate the ki-

netic energy term precisely. Because of this, it is challenging to calculate the kinetic

energy precisely. The Hohenberg-Kohn theorems are limited in their applicability

to ground-state systems exclusively. This means that it cannot be used to describe

excited states or dynamics of a system. Another limitation is that the theorem as-

sumes a non-degenerate ground state, which may not always be the case for certain

systems.

3.9 Kohn-Sham Formulation

Kohn and Sham proposed a method to solve the problems that arise is the Hohenberg-

Kohn theorem [74] based on two approximations described as follows [75]:

1. The ground state density can be understood as the ground state of a system

consisting of non-interacting particles in an auxiliary framework.

2. The Hamiltonian of the auxiliary system is formulated using the conventional

kinetic energy operator, while the auxiliary potential is regarded as an effective

local potential.
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The Kohn-Sham theorem postulates that the electron density of the ground state

in an interacting system is equivalent to the electron density of the ground-state

in a non-interacting system, provided that an effective potential Veff is employed.

We disregard all forms of interaction between atoms, electrons, and nuclei in a

system that doesn’t interact. This approximation best works for densities which

are smooth and vary slowly [74]. Kohn and Sham considered a many-body, multi-

electronic system composed of non-interacting particles. They solve the system using

a modified form of Schrödinger equation for a non-interacting system that produces

the same value of ground state electron density as an interacting system. The non-

interacting wave-function of a many body wave-function is a Slater-determinant

of one-electron wave-function. One can obtain the wave-function by solving this

Schrödinger equation (also refers as Kohn-Sham equation):

ĤksΨj = {− ℏ2

2me

∇2 + Veff}Ψj = ϵjΨj (3.50)

Here, the term Veff refers to “effective potential”, which compensates error due to

ignoring interaction. The total energy E (E =
∑

j ϵj) is divided into two parts. The

known component; which comes from the non-interacting part. And the unknown

component; which is also known as exchange-correlation part(Exc[n(r⃗)]). It contains

all the errors that are contain in a non-interacting system as we neglect all types of

interaction between particles. This correlation part can be evaluate using different

approximation like “LDA”, “GGA” et cetera which will be discussed in section 3.10.

The kinetic energy term is divided into two parts; the kinetic energy of non-interacting

particles(Ta) and the kinetic energy of interacting particles(Tb). The non-interacting

part can be obtain by the equation:

Ta[n(r⃗)] = − ℏ2

2me

∑
i

〈
Φi|∇2

r⃗i
|Φi

〉
(3.51)

The kinetic energy of interacting particles(Tb) can be obtained by approximation

methods like “LDA”, “GGA” et cetera. Also, the effective potential can be obtained

from:

Veff = Vext + VH [n(r⃗)] + Vxc[n(r⃗)] (3.52)
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Here, VH [n(r⃗)] is Hartree potential, which is obtained by:

VH [n(r⃗)] =
e2

4πϵ0

∫
dr⃗′

n(r⃗′)

|r⃗ − r⃗′|
(3.53)

And the exchange-correlation potential Vxc[n(r⃗)], is defined as:

Vxc =
δExc[n]

δn
(3.54)

From those considerations, the new Hamiltonian becomes:

H = − ℏ2

2me

∑
i

∇2
r⃗i
+

e2

4πϵ0

∫
dr⃗′

n(r⃗′)

|r⃗ − r⃗′|
+ Vxc + Vext (3.55)

The major distinction within the formulation and the Hartree formulation is the

fact that the Kohn–Sham formulation involves exchange along with correlation in

the effective potential. So, Kohn–Sham has about the same amount of work to do

as Hartree, but a lot fewer compared to Hartree–Fock. It can be seen that to solve

the equation (3.55), we need electron density. To find the electron density requires

a single electron wave-function. And to know the wave-function, one must solve the

equation (3.55). So to break this circle, the equation is solved in an iterative process

as follows:

1. Set a baseline electron density, n(r⃗), for analysis.

2. Solve the equation using the sample electron density to determine the single

particle wave-function ψi(r⃗).

3. Calculate the electron density from the equation below:

nks(r⃗) =
∑
i

ψ∗
i (r⃗)ψi(r⃗) (3.56)

4. Examine the calculated electron density nks(vecr) to the experimental electron

density n(vecr). If the densities are self-consistent, then this is the electron

density in the ground-state. Alternately, revise the sample electron density

and proceed to step 2.
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In the above process, the term “self-consistent” means that the electronic density

is changed over and over again until the energy is at its lowest and the electronic

Hamiltonian matches the current density. This looping process keeps going until the

electronic density converges on an answer that makes sense on its own. The above

circle is shown using a flow-chart [76] in figure 3.1.
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Figure 3.1: Flow chart of solving the Kohn-Sham equation

3.10 Exchange-Correlation Potential

In DFT, the exchange-correlation potential is a word for how the electrons in a

material interact with each other. It combines the effects of exchange and corre-

lation, which are two basic ideas in quantum physics that explain how electrons

interact with each other. The exchange potential comes from the fact that electrons

are identical objects and follow the Pauli exclusion principle, which says that it is
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impossible for two fermions that are identical to inhibit the same quantum state si-

multaneously. The correlation potential comes from the fact that electrons connect

with each other through Coulombic forces, which depend on where and how fast

they are moving. In DFT, to solve the equation (3.55), we also need an expression

for the exchange-correlation potential. For the solution, different theoretical mod-

els and estimates are used to get close to the exchange-correlation potential. The

accuracy of these rough estimates varies on the type of material being modeled and

how it is used. In the next parts, we will talk about and analyze the local density

and generalized gradient approximations, which are two of the most common ways

to solve the exchange-correlation functional.

3.10.1 LDA

The LDA stands for “local density approximation”. Here the exchange-correlation

potential is a function of electron density n(r⃗) only. Walter Kohn described LDA as

the forebearer of all approaches in his Nobel lecture [48]. From this approximation,

the exchange-correlation energy follows the formula:

ELDA
xc (n(r⃗)) =

∫
n(r⃗)ϵxc(n(r⃗))dr⃗ (3.57)

From spin polarized system [77], the form of the equation is change into:

ELSDA
xc (n↑(r⃗), n↓(r⃗)) =

∫
n(r⃗)ϵxc(n↑(r⃗), n↓(r⃗))dr⃗ (3.58)

Here, LSDA means Local Spin Density Approximation. The exchange-correlation

energy(ϵxc(n(r⃗))) per particle at each point in the system is the same as that of uni-

form electron gas of same density. The exchange-correlation energy can be divided

into two parts; the exchange part and the correlation part. Using the equation 3.54,

we can find the exchange-correlation potential as [78]:

Vxc =
δELDA

xc (n(r⃗))

δn
= ϵxc(n(r⃗)) + n(r⃗)

δϵxc(n(r⃗))

δn
(3.59)
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The advantage of LDA is its low complexity, which makes it computationally effec-

tive and makes it possible to examine big systems. LDA is the only case where the

exchange-correlation functional can be derived exactly. It has been discovered that

this approximation is fairly true for a variety of systems, especially for bulk solids.

An additional advantage of this approximation is that LDA sheds light on the elec-

trical characteristics of materials, enabling researchers to forecast and comprehend

phenomena including chemical reactivity, optical characteristics, and magnetic be-

havior [79, 80]. This approximation has many disadvantages as well. The solutions

of exchange-correlation effects in the LDA are improper when the assumption of an

electron gas with a slowly varying density as the starting point is fundamentally

false. Examples include the Van der Waals interactions between non-overlapping

subsystems, the electronic Wigner crystal, and electronic tails dissipating into space

on the surfaces of bounded electronic systems [48]. However, density functional

theory may effectively address such issues when using the right approximations.

3.10.2 GGA

GGA stands for “generalized gradient approximation”. In this approach, the exchange-

correlation potential depends on density(n(r⃗))) as well as the gradient of density(∇n(r⃗)))

[81]. This approximation is achieved by improving local density approximation

[82, 83]. From this approximation, the exchange-correlation energy follows the for-

mula:

EGGA
xc = EGGA

xc [n(r⃗)),∇n(r⃗))] =
∫
n(r⃗)ϵxc(n(r⃗),∇n(r⃗))dr⃗ (3.60)

By considering the spin components, the equation can rewrite as:

EGGA
xc [n↑(r⃗), n↓(r⃗),∇↑(r⃗),∇↓(r⃗)] =

∫
n(r⃗)ϵxc(n↑(r⃗), n↓(r⃗),∇↑(r⃗),∇↓(r⃗))dr⃗ (3.61)

GGA is better than LDA at predicting the electronic qualities of materials because

it takes both the local electron density and the gradient of that density into account

[84, 85]. It also gives a better explanation of how molecules and solids are held

together by chemical bonds. It can also predict non-local features like magnetic

interactions and exchange-correlation energies. GGA also needs less computer power
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than more advanced ways, which makes it easier to use for large-scale calculations.

Overall, GGA has made it much easier to simulate and understand how materials

behave at the atomic level.GGA corrects too much When the lattice constants of

LDA fit better than those of GGA, ionic crystals are the result. But neither LDA

nor GGA works well when it comes to transition metal oxides or rare earth elements.

3.10.3 Hybrid Functional

Hybrid functional approximation is a sort of computational method employed in

DFT studies. It was created by A. Becke [48]. Hybrid functionals try to get around

this problem by mixing parts of both the local density approximation (LDA), and

the generalized gradient approximation (GGA). In this method, the first exchange-

correlation energy was written in the format:

Ehyb
xc = γEks

x + (1− γ)EGGA
xc (3.62)

Here, Eks
x is the exchange energy calculated with the exact Kohn-Sham wave-

functions. And γ is known as fitting parameter. Currently, there are numerous

popular hybrid functionals available, including B3LYP, PBE0, and HSE06. Each of

these functionals has its own unique strengths and weaknesses, which depend on the

specific material and property being studied.

The main benefit of hybrid functionals is that they blend the best parts of both

LDA and GGA functionals. LDA does a good job of describing how the density

changes slowly, but it doesn’t account for the exchange-correlation energy in sys-

tems where the density changes. GGA, on the other hand, gives a better picture of

the exchange-correlation energy, but it often overestimates or underestimates certain

properties, such as band-gaps, bond lengths, and reaction energies. Hybrid func-

tionals get around these problems by adding a small amount of exact Hartree-Fock

exchange to the normal GGA functional. This makes the predicted properties more

accurate, especially for systems with big band-gaps, states that are localized, and

atoms of transition metals. The result is a hybrid functional that is a mix of LDA

and GGA parts. This gives a good balance between accuracy and cost of processing.
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In general, the benefit of hybrid functional approach is better than LDA and GGA

functionals because it is more accurate and stable. This quality makes it handy for

predicting the properties of materials and molecules in a wide range of applications,

such as catalysis, energy storage, and electronic devices.

3.11 Applications

There are several uses of DFT in physics, chemistry as well as materials science.

Here are some uses of DFT as follows:

• DFT is a great way to learn about things like electronic properties of materials

like band-gap, DOS et cetera. As we already know, The change in energy

between a material’s VB and CV is called the band-gap. With the aid of Kohn-

Sham equations, which describe the behaviour of electrons that don’t interact

with each other in the presence of an effective potential, DFT calculation is

helpful for correctly predicting the band-gap of a substance. DOS, on the

other hand, offers details regarding the distribution of electronic states within

a material’s band structure. By integrating the density of states over the

allowable energies, DFT computations can be utilized to determine the DOS.

• DFT can be used to study the X-ray absorption spectra and X-ray emission

spectra of material [86]. X-ray absorption spectroscopy (XAS) examines how

the amount of X-rays absorbed by a sample changes with the energy of the

X-rays. The absorption spectrum shows how the particles in the material are

put together electronically. On the other hand, X-ray emission spectroscopy

(XES) tracks how the energy of the light that a sample gives off after being

excited by X-rays. DFT can be used to figure out how the material’s electrons

are organized and to model the XAS and XES spectra. By comparing the

simulated spectrum to the real spectrum, you can learn about the electronic

structure of the object.

• DFT is used to study other properties like optical property, magnetic prop-

erty of a material. By computing the electronic band structure and density of
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states (DOS), DFT is utilized to comprehend a material’s optical characteris-

tics. By analyzing the band structure and DOS, it is possible to determine the

electronic transitions that give rise to the material’s absorption and emission

spectra. Other optical characteristics, such the refractive index, and the dielec-

tric function, may be calculated using DFT and are crucial for understanding

how light interacts with the material. DFT can measure a material’s mag-

netic moment, which indicates its magnetic field strength. They can calculate

magnetic susceptibility, which measures how quickly a substance magnetises

in a magnetic field. DFT also study ferromagnetism, antiferromagnetism, and

spin glass behaviour.

• DFT is effective in predicting the sensitivity of some nano-structures to en-

vironmental pollutants such as sulfur dioxide [87] or acrolein [88], as well as

their mechanical characteristics [89].

DFT is also employed in a wide range of other processes, including catalytic reac-

tions, surface property research, and the examination of the electronic compositions

of biomolecules, nanoparticles, and nanomaterials. In the grand scheme of things,

it can be stated that DFT is an effective technique in the present-day scientific era.
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Chapter 4

Results and Discussions

4.1 Computational Details

The structural, electronic, and optical properties of Rb2NaScCl6 double perovskite

are studied using the full potential linearized augmented plane wave (FP-LAPW),

based on density functional theory method, which is part of the WIEN2k package.

The Perdew Burke Ernzerhof (PBE) [90] approximation is used in conjunction with

the generalized gradient approximation (GGA) to discover the optimum ground

states of the materials under consideration. It has been determined that the mini-

mum values for the radius of the muffin tin (RMT ) for Rb, Na, Sc, and Cl are 2.5,

2.5, 2.47, and 2.23 a.u., respectively. We set RKmax = 7 where R is the smallest

radius of muffin-tin sphere and Kmax is the largest reciprocal lattice vector used in

the expansion of flat wave-function. Moreover, the number of k-point is selected to

4000 in Brillouin zone. When the total energy and charge of the system is stable

within the energy of 10−5 Ry and 10−3 e respectively, then self-consistent equation

is converged.
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Rb
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Figure 4.1: Crystal Structure of cubic Rb2NaScCl6 double perovskite

The volume optimization is provided with WIEN2k package that determines the

minimum energy possessed by a system by plotting volume vs energy graph which

has been shown in figure 4.2. By volume optimization, the lattice constant has been

found to be 10.54793 Å. In order to determine the optimised ground states of the

materials being studied, the energy versus volume of a unit cell of the crystals was

calculated. The Birch-Murnaghan thermodynamic state relation is used as the basis

for this analysis. The relation gives us the following equation [91]:

E(ϑ) = Eo +
9V0K0

16

{([V0
V

] 2
3 − 1

)3

K
′

0

}
+

9V0K0

16

{([V0
V

] 2
3 − 1

)2}
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6− 4

[V0
V

] 2
3
}

(4.1)

HereE(ϑ) is the energy at volume V , E0 is the energy at equilibrium volume V0. The

symbol K0 and K ′
0 represents the bulk modulus and its derivative respectively. The

lattice parameters using different pressures were calculated to see how our compound

reacted to the change in pressure and the variation has given in table 4.1. The Birch-

Murnaghan equation relates pressure and volume (P-V) and can be expressed in the

following form:

P =
3

2
K0

[(
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) 7
3

−
(
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V

) 5
3

][
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3

4
(K ′
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) 2
3

− 1

]]
(4.2)
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Where K0 can be represented as follow:

K0 = −V = (
∂K

∂p
)P=0 (4.3)

The total energy, and fermi energy are given in the table has found to be -19318.76195

Ry and -0.0380108 eV respectively. The total energy versus the number of iteration

has shown in figure 4.3.

-19318.7680

-19318.7670

-19318.7660

-19318.7650

-19318.7640

-19318.7630

-19318.7620

-19318.7610

-19318.7600

 1850  1900  1950  2000  2050  2100  2150

E
n
er

g
y
 (

R
y
)

Volume (bohr
3
)

Rb2NaScCl6: Murnaghan
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48



Results and Discussions

4.2 Electronic Properties

4.2.1 Band-Structure

One of our main goals of this project is to generate the band-structure and determine

the band-gap of Rb2NaScCl6 double perovskites. We use the WIEN2k software to

generate this band-structure. The input of this calculation is mainly the crystal

structure of this metal which is represented in section 1.1. The calculated band-

structure of Rb2NaScCl6 is shown in figure 4.4. The energy gap between the top of

the valance band (VB) and the bottom of the conduction band (CB) is founded 3.9

electro volt (eV). So Rb2NaScCl6 is a compound with a large band-gap. Figure 4.4

shows that the CV minimum and VB maximum are both at the same point Γ. So

the crystal has the direct band-gap.
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Figure 4.4: Calculated band structure of Rb2NaScCl6 using GGA potential
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We conducted band-gap calculations under varying pressures to investigate the re-

sponse of our compound to pressure changes. The variation of band-gap under

different pressure has shown in table 4.1. According to what is displayed in the

table, the lattice constant decrease as the pressure is increased. On the other hand,

the band-gap increase till 20 GPa pressure. After that, it begin to decrease. Our

compound possesses a property that has the potential to be useful in a variety of

important contexts. The band structure of Rb2NaScCl6 under some of the pressures

we examine can be seen in a transparent form in (figures 4.5 and 4.6).

Table 4.1: Change of lattice parameter and band-gap under different pressure

PRESSURE LATTICE PARAMETER BAND-GAP

(GPa) (Å) (eV)

0 10.54793 3.908

10 9.80553 4.339

20 9.44203 4.413

30 9.20275 4.378

40 9.02535 4.309

60 8.76893 4.141

80 8.58481 3.919

100 8.44178 3.668

120 8.32516 3.421

140 8.22692 3.186

160 8.14220 2.963

180 8.06780 2.750

200 8.00157 2.549
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Figure 4.5: Band structure of Rb2NaScCl6 double perovskite under (a) 0 GPa (b) 20
GPa (c) 40 GPa (d) 80 GPa pressure
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Figure 4.6: Band structure of Rb2NaScCl6 double perovskite under (a) 120 GPa (b) 160
GPa (c) 200 GPa pressure

52



Results and Discussions

4.2.2 Density of States

The density of states (DOS) of Rb2NaScCl6 double perovskites is shown in figure

4.7.
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Figure 4.7: Density of states of Rb2NaScCl6 double perovskite

The figures for DOS are generated using 20,000 k-points. In total DOS the contribu-

tion of Chlorine (Cl) in VB and the contribution of Scandium (Sc) in CB dominates

over other atoms. We took the contribution of s, p, d orbitals for Rb and Sc atoms,

and s, p orbitals for Na and Cl atoms. The figure 4.8 shows the partial density of

states (PDOS) for each atom’s orbital. The figure shows that for the Rb atom, the

p orbital in VB and s orbital in CB dominate over other orbitals. For the Na atom,

both s and p contributes equally in VB. But in CB the s orbital shows slightly large

contribution than p. In the Sc atom, the d orbital dominates in both VB and CB.

And finally, for Cl atom, both VB and CB are dominated by p orbital. So we can

say that p orbital contribution of the Cl atom in VB and d contribution of the Sc

atom in CB is more than the other atom’s orbital contain in the compound.
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Figure 4.8: Partial density of states of (a) Rb, (b) Na, (c) Sc, (d) Cl atoms

We create diagrams of the DOS at various pressures. It has been observed that the

DOS at the Fermi level changes as the pressure changes. We can relate it with band-

gap as the band-gap change as the pressure change. So the energy distance between

the VB and CB from fermi level is also change. However, it has been observed that

Chlorine and Scandium have made the most significant contributions to the VB and

CB, respectively, in every case. The orbitals contribution of all atom has found same

as well. The DOS of our compound at different pressure have shown in figure 4.9

and 4.10.
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Figure 4.9: Density of states of Rb2NaScCl6 double perovskite under (a) 0 GPa (b) 20
GPa (c) 40 GPa (d) 80GPa (e) 120 GPa (f) 160 GPa pressure
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Figure 4.10: Density of states of Rb, Na, Sc, Cl atoms in Rb2NaScCl6 double perovskite
under 200 GPa pressure.

4.3 Optical Properties

4.3.1 Absorption Coefficient

The absorption coefficient is a significant physical property that defines the ability

of a material to absorb and reduce the intensity of electromagnetic radiation. In

figure 4.11 we can see the variation of absorption coefficient (104/cm unit) variation

with energy.
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Figure 4.11: Absorption coefficient figure for Rb2NaScCl6 double perovskite

Our compound requires a higher energy range to initiate and enhance absorption,

due to its wide band-gap. This is because there are no available electronic states
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within the band-gap to absorb the incident photons. This implies that there is no

absorption of the mentioned light. The absorption coefficient of photons with ener-

gies higher than the band-gap varies depending on the wavelength, and is not con-

stant.Visible light has a wavelength that ranges from around 400 to 700 nanometers

which is approximately 1.8 to 3 eV in the range of photon energies. For Rb2NaScCl6,

the absorption coefficient in the region of visible light wavelength region is very low.

It can be stated that these cannot absorb visible light. However, beyond the re-

gion visible light wavelength, there is an increase in absorption, indicating that our

compound primarily absorbs ultra-violet light. We model the absorption coefficient

diagrams under various pressures. It has been observed that as pressure rises, so

does the absorption coefficient in the region of visible light. We can relate this phe-

nomenon with the decreasing of band-gap what we have already observed in section

4.2.1, where the band-gap shrank as pressure increased. The diagrams of absorption

coefficient under various pressures can be seen in figure 4.12.
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Figure 4.12: Absorption coefficient figure for Rb2NaScCl6 double perovskite under pres-
sure 0, 20, 40, 80. 120, 160 and 200 GPa
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4.3.2 Optical Reflectivity

We are aware that optical reflectivity gauges a material’s capacity to reflect light.

In figure 4.13 we can see the variation of optical reflectivity with various energy for

our material.
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Figure 4.13: Optical reflectivity figure for Rb2NaScCl6 double perovskite

The figure shows us that under the band-gap energy, the Rb2NaScCl6 double per-

ovskite has reflectivity of the incident light. After passing through the band-gap

energy, it suddenly gives a bigger pick at 4.33 eV energy and move on. The pressure

dependency of optical reflectivity for our material has shown in figure 4.14. The fig-

ure transparently shows that increasing in a large amount of pressure also increases

the initial point of optical reflectivity.
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Figure 4.14: Optical reflectivity figure for Rb2NaScCl6 double perovskite under pressure
0, 20, 40, 80. 120, 160 and 200 GPa

4.3.3 Refractive Index

Figure 4.15 is showing a diagram of refractive index of Rb2NaScCl6 double per-

ovskite. The graph is showing the relation between correlation between the refractive

index and photon energy.
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Figure 4.15: Refractive index figure for Rb2NaScCl6 double perovskite
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The refractive index is almost constant until we are close to the band energy level.

The refractive index is maximum at 4.33 eV energy. So, in the UV regions, the

compound is transparent. After 8 eV the refractive index is continuously decreasing.

The change between the refractive index and photon energy under different pressure

has shown in figure 4.16.
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Figure 4.16: Refractive index figure for Rb2NaScCl6 double perovskite under pressure 0,
20, 40, 80. 120, 160 and 200 GPa

4.3.4 Dielectric Function

The dielectric function component for face centered cubic crystal Rb2NaScCl6 have

illustrated in the figure 4.17. In the diagram we can see the variation of both real

and imaginary part dielectric function with respect to energy. Both of the part have

shown a static movement from two different initial point until band energy. The

imaginary part of dielectric function, which is related to the material’s absorption

of electromagnetic radiation, starts to increase after band-gap energy and has its

highest pick point at 4.45 eV energy. It is because at energies that are much higher

than the band-gap, the material absorb a lot of energy, and the imaginary part of

the dielectric function will be the most important. On the other hand, the real part
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which has its highest pick point at 4.27 eV and than it starts going downward. At

high energies, the real part of the dielectric function goes to zero, which means that

the material acts like a conductor.
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Figure 4.17: (a) Real and (b) imaginary part of dielectric function for Rb2NaScCl6 double
perovskite

The pressure dependency of Rb2NaScCl6 double perovskite has shown in figure 4.18

and 4.19.
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Figure 4.18: Real dielectric function figure for Rb2NaScCl6 double perovskite under
pressure 0, 20, 40, 80. 120, 160 and 200 GPa
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Figure 4.19: Imaginary dielectric function figure for Rb2NaScCl6 double perovskite under
pressure 0, 20, 40, 80. 120, 160 and 200 GPa

4.3.5 Optical Conductivity

The diagram for optical conductivity (Ω−1cm−1 unit), which describes how well a

material conducts electricity in response to an applied electric field of our material

Rb2NaScCl6 shown in figure 4.13:
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Figure 4.20: Optical conductivity figure of Rb2NaScCl6 double perovskite
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The figure shows us that after crossing the bang-gap energy in x-axis, the conduc-

tivity of our compound starts increasing. This is so that it can excite its electrons

from VB to CB after receiving this level of energy. As a result, the CB in the

material gains free electrons, enabling electrical conductivity. It have the highest

conductivity at energy 12 eV. After passing energy 13 eV, the conductivity starts

falling to the bottom. The pressure dependency of Rb2NaScCl6 double perovskite

has shown figure 4.21. The figure clearly demonstrates that as pressure increases,

the optical conductivity of the material also increases.
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Figure 4.21: Optical conductivity figure for Rb2NaScCl6 double perovskite under pressure
0, 20, 40, 80. 120, 160 and 200 GPa

4.3.6 Electron Energy Loss

Electron energy loss (EEL) refers to the amount of energy that an electron loses

while traversing a substance.The plot for EEL for Rb2NaScCl6 double perovskite

has been shown in figure 4.22.
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Figure 4.22: Electron energy loss figure for Rb2NaScCl6 double perovskite

The figure demonstrates that as electron energy rises, so does its EEL. This happens

because the electrons and atoms in the compound interact. As a result, the electrons

to give up energy via things like excitation and ionization. There is presence of

multiple pick in different energy level. It is because of appearance of different atoms

in our compound. From the plot for different pressure, we can see from figure 4.23

that EEL starts more early energy than it’s lower pressure. But the the pick points

EEL also decrease as well.
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Figure 4.23: Electron energy loss figure for Rb2NaScCl6 double perovskite under pressure
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Chapter 5

Conclusion

5.1 Summery of Results

The crystal structure of the material Rb2NaScCl6 double perovskite has been ana-

lyzed, and its electronic and optical properties have been determined through our

study. The lattice parameter has been determined to be 10.54793 Å. The band-gap

is found to be 3.9 eV, and it has been determined that the material exhibits direct

band-gap characteristics. It was observed that chlorine has a significant contribu-

tion in the VB, while scandium dominates in the CB compared to other atoms.

The optical properties are significantly influenced by the band-gap. For example,

we have a material with a wide band-gap that mostly absorbs UV light because low

energy and long wave lengths can’t move an electron from the valence band to the

conduction band. Increasing the energy level of the material can enhance certain

characteristics such as conductivity, imaginary dielectric function, and electron en-

ergy loss. However, the process also amplify the reduction of other characteristics

such as the refractive index.

The study shows the material characteristics at different levels of pressure. The re-

sults indicate a reduction in lattice parameter. The value of the band-gap increases

until a pressure of 20 GPa is reached. Following that, the band-gap starts to put
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down as pressure builds. The contribution of atoms in DOS was discovered to be

the same regardless of pressure. The equivalence of the contribution of chlorine and

scandium in the VB and CB has been observed to remain consistent with previous

findings. The optical characteristics have been observed to undergo alterations in re-

sponse to variations in pressure. For example, figure 4.18 and 4.19 demonstrate that

raising the pressure can result in an increase in the imaginary dielectric function,

while causing a decrease in the real dielectric function at high energy levels. As the

pressure increases, there is a shift in the starting point of the absorption coefficient

from the UV to the visible range of wavelength in the electromagnetic spectrum.

The other optical properties are also influenced by the changes in pressure.

5.2 Scope of Future Applications

Energy consumption is rising with time in today’s globe. Third-world countries

struggling to satisfy their basic demand for energy. Renewable energy, like solar

cells, water splitting will be a simple and elegant answer to these problems. Solar

panel needs materials that can absorb visible light and convert the light into electri-

cal current. Regrettably, the material Rb2NaScCl6 exhibits a broad band-gap, which

precludes its capacity to absorb the visible light. However, there are opportunities

to reduce the band-gap of the material through the process of doping. Numerous ex-

periments have demonstrated that the utilization of an appropriate doping material

can result in a reduction of the band-gap of double perovskite [92–94]. Additionally,

if the material’s band-gap is narrowed, it can be used to make optical devices like

lasers and LEDs. Moreover, through appropriate composition, a direct bandgap

material with a wide band-gap can be readily employed for the process of water

splitting [95, 96]. The transition-metal sites can act as an active sites where differ-

ent reaction can take place. Using this nature we can use it multiple purpose like

catalysis. Because this material absorb UV light very well, it can be used to make

devices such as optical filter devices and water purification devices.

Rb2NaScCl6 has potential to use it for Tandem solar cells [97], which is a new tech-

nology for the future. The word “Tandem” refers to multi-junction. A tandem solar
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cell is a device that has multiple layers of different compounds featuring various

band-gaps piled on top of one another. Each layer can absorb a different part of the

solar spectrum. This makes it easier to absorb sunlight and increase the efficiency

of the conversion. In this case, the high-energy photons that are not absorbed by

the lower layers would be taken in by the wide band-gap material. The solar cell’s

overall performance would get up as a result. The material is devoid of hazardous

elements such as Mercury (Hg), Lead (Pb), Arsenic (As), and others listed in the

periodic table. This renders the compound harmless to the environment. This ma-

terial can be applied without concern for potential harm to both human health and

the environment.

In summary, it can be stated that with appropriate utilization, Rb2NaScCl6 com-

pound can serve multiple purposes, including energy consumption applications.
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Appendix

Functional

In our description of density functional theory, we use the term functional. What

does “functional” mean? A functional is a operation that takes a function as the

input and produces a single number as the result. So in a functional, one function

is basically said to be mapped into another. For example we consider a functional

F [f(x)] such that :

F [f(x)] =

∫ 1

−1

f(x)dx (5.1)

Where, the function f(x) is (x2 + 1). By evaluating further, we obtain:

F [f(x)] =

∫ 1

−1

(x2 + 1)dx =

∫ 1

−1

x2dx+

∫ 1

−1

1dx =
x3

3

∣∣∣1
−1

+ x
∣∣∣1
−1

=
8

3

(5.2)

So we get an output of a single number. In DFT, the most important function

is energy functional E[n(r⃗)]. Employing the electronic density, it figures out the

energy of the whole machine.
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