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Abstract

In the field of optoelectronics and other sustainable energy conversion applications,

vacancy-ordered double perovskite materials are thought to be the most promising

resources nowadays. In this thesis we represent the structural, mechanical, elec-

tronic, optical and thermoelectric properties of vacancy-ordered double perovskite

K2SeCl6 studied by first principle calculations under ambient and different hydro-

static pressure ranging upto 80 GPa. The structural stability of the compound is

ensured by the Goldsmiths tolerance factor (0.98) and negative formation energy

(−0.53 eV). It exhibits good mechanical stability when pressure is applied revealing

that induced pressure has a substantial influence on the mechanical stability. The

bandstructure shows p-type semiconducting nature with an indirect band gap of

2.502 eV at ambient condition and band gap decreases gradually with induced pres-

sure. The optical absorbance and conductivity increases with increasing pressure

making them more appropriate for optoelectronic applications in Ultra-violet re-

gion. The optical analysis has been conducted by computing the dielectric function,

absorption coefficient, conductivity, optical reflection, and refractive index. Ther-

moelectric charecteristics are investigated using BoltzTraP to estimate the electrical

and tharmal conductivities, seebeck coefficient, power factor and figure of merit. The

computed value of figure of merit at room temperature (0.78) reveals the promis-

ing potential for renewable energy applications of K2SeCl6 in both ambient and

pressurized conditions.
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Chapter 1

Introduction

Vacancy-ordered double perovskite materials represent a fascinating class of crys-

talline compounds that have gained significant attention in the field of materials

science and condensed matter physics [1, 2]. These materials are known for their

unique structural and electronic properties, which make them promising candidates

for a wide range of applications, including in the fields of electronics, magnetism,

and energy conversion [3, 4]. To understand what makes vacancy-ordered double

perovskites special, it’s essential to break down their name. “Double perovskite”

refers to a particular crystal structure characterized by the general formula A2BB′X6,

where A stands for an alkali earth metals, B, B′ are two different transition metals

and X represents an anion [5]. These B, B′ sites can be occupied by different transi-

tion metals, creating a wide range of possibilities for tailoring their properties [6,7].

In case of vacancy-ordered double perovskites, there is a controlled distribution of

vacant atomic sites within the structure, which can lead to remarkable effects on

the physical properties [8, 9]. The ordering of these vacancies can be seen as a kind

of atomic chessboard where specific atoms are deliberately missing, creating a com-

plex and intriguing arrangement [10, 11]. Vacancy-ordered double perovskites have

recently garnered attention due to their tunable electronic properties, making them

versatile materials for applications such as solid oxide fuel cells, thermoelectric and
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Introduction

optoelectronic devices [12,13]. The presence of vacancies in the crystal lattice enables

control over electronic behavior, leading to materials with diverse electrical conduc-

tivity, from metals to semiconductors [14–16]. Additionally, the ionic conductivity

of these materials is enhanced, making them promising for use in electrochemical

devices [17–19]. Researchers are exploring their potential in energy conversion, stor-

age, and as efficient materials for thermoelectric applications, leveraging the unique

properties arising from vacancy ordering in the perovskite structure [20–24].

In recent years, researchers are studing vacancy-ordered double perovskite mate-

rials enormousely. As example, Aiyeshah Alhodaib et al. studied the vacancy-

ordered double perovskites In2PtX6 (X = Cl, Br, I) for solar cells and renewable

energy applications as an alternative of hybrid perovskites [25]. Fei Zhang et al.

and Zhipeng Chen et al. explored the highly stable vacancy-ordered double per-

ovskite Rb2ZrCl6 with broadband emission for down-conversion white light-emitting

diodes [26]. Faizan et al. and Muhammad et al. studied the electronic and optical

properties of vacancy-ordered double perovskites A2BX6 ( A = Rb, Cs; B = Sn, Pd,

Pt and X = Cl, Br, I) and showed them to be the suitable candidate for high perfor-

mance single and multi junction perovskite solar cells [27]. Cucco et al. and Bouder

et al. reported Cs2TiX6 and Cs2ZrX6 ( X = Br, I) vacancy-ordered double per-

ovskites as a stable absorber with interesting electronic and optical properties, such

as a bandgap in the visible, and long carrier diffusion lengths [28]. Bhumla et al. and

Preeti et al. studied the vacancy-ordered double perovskites Cs2BI6 ( B = Pt, Pd,

Te, Sn) in search of promising renewable energy conversion applications [29]. One

of the most well-known examples of a vacancy-ordered double perovskite is K2SeCl6

(potassium selenochlorate). In which, the potassium (K) and selenium (Se) atoms

are arranged in an ordered fashion within the crystal lattice, with specific vacancies

that result in a unique electronic and magnetic structure [30]. This unique arrange-

ment offers exciting prospects for exploring the inherent properties of the material

and manipulating its characteristics through appropriate modifications. The pres-

ence of Se(IV) in K2SeCl6 makes it intriguing for studying the electronic structure

and chemical behavior of selenium in this unique oxidation state [31]. Investigation

of K2SeCl6 both in pressurized and ambient condition can contribute to our fun-
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Introduction

damental understanding of materials in chemistry, crystallography, and solid-state

physics.

The pressure effect on vacancy-ordered double perovskite materials is a fascinat-

ing area of research that sheds light on the dynamic relationship between exter-

nal pressure and the structural, electronic, and magnetic properties of these com-

pounds [32, 33]. Pressure, or hydrostatic compression, has been shown to induce

significant changes in the physical properties of vacancy-ordered double perovskite

materials, offering new avenues for tuning and controlling their behavior [34, 35].

Pressure can induce structural phase transitions in materials [36]. At high pres-

sures, the atomic arrangement within the crystal lattice can undergo significant

alterations [37]. This can lead to changes in bond lengths, bond angles, and the

overall symmetry of the crystal structure. Changes in the crystal structure under

pressure can result in modifications of the electronic and magnetic properties [38,39].

For example, pressure may affect the density of states near the Fermi level, leading

to alterations in electrical conductivity or electronic bandgaps [40]. Pressure can

also influence the magnetic ordering and magnetic moments of the atoms within the

material [41,42].

In this thesis, we investigate the changes in mechanical, optoelectronic, and thermo-

electric porperties of K2SeCl6 by subjecting it to varying pressure conditions upto

80 GPa. We follow the first-principle calculation method using Density Functional

Theory (DFT) [43,44] as implemented in WIEN2k [45,46] code. DFT is a computa-

tional method used in quantum mechanics to describe the electronic structure and

properties of solids. It provides a powerful approach for studying the behavior of

electrons within a material. At its core, DFT is based on the idea that the total

energy of a system can be expressed in terms of the electronic density rather than

the complex wave functions of individual electrons [47]. By solving the underlying

mathematical equations, it provides insights into the behavior of electrons and their

interactions, allowing scientists to predict and understand various properties and

phenomena [48]. WIEN2k is a versatile and sophisticated software package for elec-

tronic structure calculations in materials science. It provides a comprehensive set
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of tools for simulating and analyzing the electronic properties of solids [49]. It em-

ploys the full-potential linearized augmented plane wave (FP-LAPW) method [50],

which allows an accurate calculations of electronic structures and related properties.

WIEN2k incorporates several advanced features, including spin-orbit coupling, the

treatment of disordered systems, and the calculation of optical and magnetic prop-

erties. It can handle a wide range of crystal structures and is particularly useful

for investigating complex and challenging materials. BoltzTraP [51] is employed to

investigate the electronic transport properties and explore possible thermoelectric

uses. We choose to investigate our system with both ambient and under externally

applied hydrostatic pressure because material behaviour changes on application of

a strain, or to model interactions between a substrate and molecule.

This thesis aims to provide a comprehensive understanding of the structural, me-

chanical, electronic, optical, and thermoelectric properties of K2SeCl6 under ambient

and applied hydrostatic pressure. In Chapter 2, we discuss the basic quantum me-

chanics as the base of density functional theory. Starting from Schrödinger equation

we dispute the criteria for the ground state wave function. We shortly discuss the

Born oppenheimar approximation and the Hartree-Fock approach with its limita-

tions in this chapter. In chapter 3 we discuss the theoritical density functional

theory. Starting with the Thomas Fermi model we discuss the Hohenberg Khon

theorems, Kohn Sham equation with the equivalent flowchart and the exchange

correletion functionals that can be used to solve a many body system. In chapter

4 we weigh up the structural, electronic, optical and thermoelectric properties of

K2SeCl6 vacancy-ordered perovskite material under ambient conditions. With ap-

plied pressure upto 80 GPa, we represent the possible changes in inherent properties

of K2SeCl6 in chapter 5. In last chapter we make a conclusion about the properties

that are changes because of induced pressure, and possible potential applications of

the material under both ambient and pressurized conditions.
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Chapter 2

Basic Quantum Mechanics

Density functional theory (DFT) is built upon the foundation of basic quantum

mechanics, particularly the Schrödinger equation. The Schrödinger equation deals

with all issues in the electrical structure of matter However, in most circumstances,

one is only concerned with atoms and molecules that do not have time-dependent

interactions. So, we may concentrate on the Schrödinger equation that is time inde-

pendent. This is supplied by the Born-Oppenheimer non relativistic approximation

for an isolated N electron atomic or molecular system [52].

ĤΨ = EΨ (2.1)

Here, Ĥ is the Hamiltonian operator, Ψ represents the wave function, and E cor-

responds to the energy of the system. Equation 2.1 must be solved while taking

into account the proper boundary conditions. For an atom or molecule or with

the proper periodic boundary conditions for a regular finite solid, Ψ must behave

well everywhere and in particular decay to zero at infinity. We are aware that the

first and foremost postulate of fundamental quantum mechanics is that “a particle’s

state is completely described by its time independent wave function,” meaning that

the wave function contains all the information required to understand a particle’s

state. Quantum mechanically it is denoted by Ψ. In essence, it has no physical
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significance. The square of it’s modulas gives the probability of finding a particle in

a given region. |Ψ|2 is the probability distribution function in the sence that

|Ψ(rN , sN)|2 drN= Probability of finding the system with position coordinates

between rNand rN + drN and spin coordinates equal to sN .

Here, drN = dr1, dr2, ....drN ; rN = r1, r2......rN and sN stands for the set s1, s2.....sN .

The spatial coordinates are continious while the spin coordinates are discrate. Be-

cause electrons are fermions and Ψ must be antisymmetric with respect to inter-

change of the coordinates of any two electrons. The properties of a valid wave

function are: In order to avoid infinity probabilities, Ψ must be finite everywhere.

In order to avoid multiple values of the probability Ψ must be single valued. For

finite potentials, Ψ and ∂Ψ
∂x

must be continious. This is required because the second

order derivative term in the wave equation must be single valued. (There are excep-

tions to this rule when V is infinity). In order to normalize the wave functions, Ψ

must approach zero as x approaches ±∞. The motion of Quantum particle can be

explained with Ψ when operated with Schrödinger Equation. The product of Ψ∗ and

Ψ represent the probability density function [53,54]. Where Ψ∗ is called the complex

conjugate of Ψ. The probability of finding a particle in whole space is unity. That is,

∫
ΨΨ∗dv = 1 (2.2)

This is called normalization condition. Wave function must be continious over the

full spatial range and square-integratable. There are many acceptable independent

solutions of equation 2.1 for a given system. The eigenfunctions Ψk with correspond-

ing energy eigenvalues are Ek. The set Ψk is complete and Ψk may always be taken

to be orthonormal and normalized

∫
Ψ∗kΨl dx

N = 〈Ψk|Ψl〉 = δkl (2.3)

We denote the ground state wave function and energy by Ψ0 and E0. Here
∫
dxN

means integration over 3N spatial coordinates and summation over N spin coordi-
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nates. Expectation values of observables are given by formulas of the type,

〈
Â
〉

=

∫
Ψ∗ÂΨ dx∫
Ψ∗Ψ dx

(2.4)

where Â is the Hermitian linear operatorfor the observable A. If Ψ is normalized,

expectation values of kinetic and potential energy are given by the formulas

T [Ψ] =
〈
T̂
〉

=

∫
Ψ∗T̂Ψ dx (2.5)

V [Ψ] =
〈
V̂
〉

=

∫
Ψ∗V̂Ψ dx (2.6)

When a system is in the state Ψ, which may or may not satisfy equation 2.1, the

average of many measurements of the energy is given by the formula [55]

E[Ψ] =

〈
Ψ|Ĥ|Ψ

〉
〈Ψ|Ψ〉

(2.7)

where, 〈
Ψ|Ĥ|Ψ

〉
=

∫
Ψ∗ĤΨdx (2.8)

Since furthermore, each particular measurement of the energy gives one of the eigen-

values of Ĥ, we immediately have

E[Ψ] ≥ E0 (2.9)

The energy computed from a guessed Ψ is an upper bound to the true ground state

energy E0. Full minimization of the functional E[Ψ] with respect to all allowed

N -electron wave functions will give the true ground state Ψ0 and energy E[Ψ0] =

E0, that is,

E0 = min
Ψ

E[Ψ]

7
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Formal proof of minimum energy principle goes on follows. Expanding Ψ in terms

of normalized eigenstates of Ĥ

Ψ =
∑
k

Ck ψk (2.10)

Then the energy becomes

E[Ψ] =

∑
k |Ck|2Ek∑
k |Ck|2

(2.11)

where Ek is the energy of the kth eigenstate of Ĥ. Noting that the orthogonality

of the Φk has been used. Because E0 ≤ E1 ≤ ...≤ EN . E(Φ) is always greater

than or equal to E0 and it reaches its minimum if and only if Ψ = C0Ψ0. Every

eigenstate Ψ is an extremum of the function E[Ψ]. In other words one may replace

the Schrödinger equation with the variational principle

δE[Ψ] = 0 (2.12)

when 2.12 is satisfied, so is equation 2.1 and vice-versa.

2.1 Born-Oppenheimer approximation

In case of a many body system containing nuclius and electrons, tha Hamiltonian

can be written as,

H = −
∑
I

~2

2mI

∇2
RI
−
∑
i

~2

2me

∇2
ri

+
1

2

∑
I,J
I 6=J

Z1ZJe
2

|RI −RJ |
+

1

2

∑
i,j
i 6=j

e2

|ri − rj|
−
∑
I,i

Z1e
2

|RI − ri|

(2.13)

The first term
∑

I
~2

2mI
∇2
RI

of the above equation represents the kinetic energy of the

Nucli. Second term
∑

i
~2

2me
∇2
ri

represents the kinetic energy of the electrons. Third

term 1
2

∑
I,J
I 6=J

Z1ZJe
2

|RI−RJ |
is for the potential energy of nucli- nucli coulonb interaction.

Fourth term 1
2

∑
i,j
i 6=j

e2

|ri−rj | is for the potential energy of electron electron coulomb

interaction and the last term
∑

I,i
Z1e2

|RI−ri|
represents the potential energy of nucli-

electron coulomb interaction.
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Making use of the fact that the mass of a proton is 1838 times greater than the

mass of an electron, which is the minimum mass ratio of an electron to a nucleus

and becomes much higher for heavier electrons. An approximation approach that is

used almost exclusively in condensed matter physics was proposed by Born and Op-

penheimer in 1927. Consider the nuclei to be static, classical potentials with respect

to the electrons, then address the electronic issue without further consideration of

the nuclei [56]. On the timeline of the electronic transition, it is possible to claim

that the core movement can be disregarded, i.e., it has no bearing on them [57–59].

Adopting Born-Oppenheimer approximation the electronic hamiltonian the becomes

Ĥ = − ~2

2m

N∑
l=1

~∇2
l +

N∑
l=1

Uion(~rl) +
∑
l<l′

e2

|~rl − ~r′l|
(2.14)

And then the Schrödinger equation for a many body system reduces to,

ĤΨ = − ~2

2m

N∑
l=1

~∇2
lψ +

N∑
l=1

Uion(~rl)ψ +
∑
l<l′

e2

|~rl − ~r′l|
ψ = EΨ (2.15)

Right hand site of equation 2.14 reveals that the first two terms correspond to the

kinetic energies of electrons and nucli respectively. The final term in the equation

represents the Hamiltonian’s potential in terms of electrostatic particle-particle in-

teractions. For issues in molecular physics and quantum chemistry, the electronic

Schrödinger equation is of particular relevance. Even with all the simplicity, there

are still a few critical issues that must be resolved before a workable solution can be

found. The kinetic energy term in equation 2.15 is just dependent on the electron

number and does not depend on the nuclear coordinate. Also the electron electron

repulsion Û is the same for every system with only Coulomb interaction. There-

fore this also means that T̂ and Û only need the electron number as input and will

therefore be denoted as universal whereas V̂ is system dependent. The expectation

value of V̂ is also often denoted as the external potential V̂ext which is consistent as

long as there is no external electric or magnetic field present [60].
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2.2 Hartree-Fock approach

The Hartree-Fock (HF) approach is the first standard approach to many body system

which was applied in 1930 by Fock to atoms. The problems which are not possible

to solve analitycally of many body problems, this theory gives a suitable strategy to

approximate it. It is as similar as the Least Action Principle (Classical Mechanics).

For now we have the interest only on the electronic Schrödinger equation. Therefore

we get, Ĥ ≡ Hel, Ê ≡ Eel. The energy (observable) correspond to the general

Hamiltonian operator can be calculated as [61],

E =
〈
Ĥ
〉

=

∫
d~r1

∫
d~r2...

∫
d~rNΨ∗(~r1, ~r2, ...~rN)ĤΨ(~r1, ~r2, ...~rN) (2.16)

If we take a wave function as a trial, the energy obtained is not the same as the actual

ground state wave function. Actual ground state energy is always lower than the

obtained energy. If trial wave function is equal as the ground state wave function,

the energies in both cases are equal.

Etrial ≥ Eo (2.17)

with

Etrial =

∫
d~r1

∫
d~r2...

∫
d~rNΨ∗trial(~r1, ~r2, ...~rN)ĤΨtrial(~r1, ~r2, ...~rN) (2.18)

and

Eo =

∫
d~r1

∫
d~r2...

∫
d~rNΨ∗o(~r1, ~r2, ...~rN)ĤΨo(~r1, ~r2, ...~rN) (2.19)

The expression above are usually inconvenient to handle. For the sake of compact

notation, Dirac’s Bra-ket notation [62] can be applied to the above equation as,

〈Ψtrial|Ĥ|Ψtrial〉 = Etrial ≥ Eo = 〈Ψo|Ĥ|Ψo〉 (2.20)

Proof: Any normalized trial wave function Ψtrial can be written as a linear com-

bination of the Hamiltonian’s eigenfunctions Ψ (each of which corresponds to an

10
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energy eigenvalue Ei) from a complete basis set [63].

Ψtrial =
∑
i

λiψi (2.21)

The eigenfunctions are assumed to be orthogonal and normalized. Therefore, it

follows that

〈Ψtrial|Ψtrial〉 = 1 (2.22)

= 〈
∑
i

λiψi|
∑
j

λjψj〉 (2.23)

=
∑
i

∑
j

λ∗iλj〈ψi|ψj〉 (2.24)

=
∑
j

|λj|2 (2.25)

From equation 2.21 and 2.25

Etrial = 〈Ψtrial|Ĥ|Ψtrial〉 = 〈
∑
i

λiψi|Ĥ|
∑
j

λjψj〉 =
∑
j

Ej|λj|2 (2.26)

In addition to the fact that the ground state energy E0 is by definition the lowest

energy conceivable and has the lowest eigenvalue (E0 ≤ Ei), it is discovered that

Etrial =
∑
j

Ej|λj|2 ≥ E0

∑
j

|λj|2 (2.27)

One of the key ideas of density functional theory is the mathematical framework

mentioned above, which consists of rules that assign numerical values to functions.

In contrast to functional, which takes a function as an input and produces numerical

outputs, whereas a function receives a numerical input and produces a numerical

output [64]. Expressed in terms of numerical calculs where Ψ → N adresses all

allowed N electron wave functions [65]

E0 = min
Ψ→N

E[Ψ] = min
Ψ→N

〈Ψ|Ĥ|Ψ〉 = min
Ψ→N

〈Ψ|T̂ + Û + V̂ |Ψ〉 (2.28)

Due to the abundance of potential wave functions and, on the other hand, the con-

11
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strained processing capacity and time, the solution for the N electron system is

almost unachievable. As in the restricted Hartree-Fock approximation, it is possi-

ble to limit the search to a more manageable subset of wavefunctions. The search

is limited to the antisymetric product of N one electron wave functions that ap-

proximates N electron wavefunctions. A wave function of this type is called Slater

determinant [65].

Ψ0 ≈ φSD = (N !)−
1
2


χ1(~x1) χ2(~x1) χN(~x1)

χ1(~x2) χ2(~x2) χN(~x2)
...

...
...

χ1(~xN) χ2(~xN) χN(~xN)

 (2.29)

It is crucial to note that the spin orbitals χi(~xi) depend on spin coordinates as well as

spatial coordinates. Spin coordinates are introduced by the spin function ~xi = ~ri, s.

The text by Szabo [66] and Holthausen [67] omits a thorough description of the

spin orbitals and their characteristics. Going back to the variational principle and

equation 2.26, the ground state energy that can be roughly predicted by a single

determinant becomes

E0 = min
φSD→N

E[φSD] = min
φSD→N

〈φSD|Ĥ|φSD〉 = min
φSD→N

〈φSD|T̂+Û+V̂ |φSD〉 (2.30)

A general expression for the Hartree-Fock energy is obtained by uses of the slatter

determinant as a trial function. According to equation 2.22, the normalization

integral 〈ΨHF |ΨHF 〉 is equal to 1 and the energy expectation value is found to be

given by the formula

EHF = 〈ΨHF |Ĥ|ΨHF 〉 =
N∑
i=1

Hi +
1

2

N∑
i,j=1

(Jij −Kij) (2.31)

where

Hi =

∫
ψ∗i (x)[−1

2
~∇2 + U(x)]ψi(x) dx (2.32)

Jij =

∫ ∫
ψi(x1)ψ∗i (x1)

1

r12

ψ∗j (x2)ψj(x2) dx1dx2 (2.33)

12
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Kij =

∫ ∫
ψi(x1)ψj(x1)

1

r12

ψi(x2)ψ∗j (x2) dx1dx2 (2.34)

These integrals are all real and Jij ≥ Kij ≥ 0. Jij are called Coulomb integrals and

Kij are exchange integrals. We have the important equation

Jii = Kii (2.35)

This is the reason the double summation in the equation that include i = j terms.

Minimization of equation subject to the orthonormalization conditions,

∫
ψ∗i (x)ψj(x) dx = δij

gives the Hartree-Fock differential equation

F̂Ψi(x) =
N∑
j=1

εijψj(x) (2.36)

Where

F̂ = −1

2
~∇2 + ~v + ~g (2.37)

In which the Coulomb exchange operator g(x1) is given by

~g = ĵ − k̂ (2.38)

Here

J(x1)f(x1) =
N∑
k=1

∫
ψ∗k(x2)ψk(x2)

1

r12

f(x1) dx2 (2.39)

K(x1)f(x1) =
N∑
k=1

∫
ψ∗k(x2)f(x2)

1

r12

ψk(x1) dx2 (2.40)

with f(x1) an arbitrary function. The matrix ε consists of lagrange multipliers.

Also,

ε∗ji = εij (2.41)

where ε is Hermitian. Now multiplying equation 2.31 with Ψ∗i and integrating, one

13
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obtains the formula for orbital energies

εi ≡ εii = 〈ψi|F̂ |ψi〉 = Hi +
N∑
j=1

( ~Jij − ~Kij) (2.42)

Summing over i and compearing with equation 2.34 we get,

EHF =
N∑
i=1

εi − V̂ee (2.43)

Where the symbol Vee stands for electron electron repulsion energy.

V̂ee =

∫
ψ∗HF (xN)

(∑
i<j

1

rij

)
ψH
(
xN
)

dxN (2.44)

=
1

2

N∑
i,j=1

( ~Jij − ~Kij) (2.45)

For the total molecular energy including nucleus nucleus repulsion one has,

WHF =
N∑
i=j

εi − V̂ee + V̂nn (2.46)

=
N∑
i=j

Hi + V̂ee + V̂nn (2.47)

Nither EHF nor WHF is equal to the sum of orbital energies. Hartree-Fock method

is a non-linear self-consistent field.

2.3 Limitations of HF approach

When the even number of electrons are located in double occupied spatial orbital,

it is called that the compound is in singlet state. It also called closed-shell system.

Again having odd number of electrons (compound with single occupied orbital) is

called triplet state. It also called open shell system. This two types of system

gives us two different approaches of Hartree-Fock methood. In restricted HF (RHF)

methood, all electrons are considered to be paired where as in UHF method, this

restriction is lifted totally. All electrons are regarded as being coupled in orbitals
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in the restricted HF method (RHF), but this restriction is completely eliminated in

the unrestricted HF method (UHF). Open-shell systems can also be described using

the restricted open-shell HF (ROHF) method, which is more difficult and thus less

common than UHF. In this method, only the single occupied orbitals are eliminated.

Additionally, there are closed-shell systems that need an open strategy to produce

the desired outcomes. For example, using a system that places both electrons in the

same spatial orbital would logically make it impossible to describe the dissociation

of H2 (i.e., the behavior at large internuclear distance), where one electron must be

situated at each hydrogen atom. This means that in HF calculations, the method

selection is always a crucial factor [68]. The size of the investigated system is a

limiting factor for calculation. Kohn states M = p5 with 3 ≤ p ≤ 10 parameters

for the result with sufficient accuracy in investigation of H2 system. When N = 100

electrons are present, the number of parameters increases to,

M = p3N = 3300 → 10300 ≈ 10150 → 10300 (2.48)

Equation 2.48 states that the energy minimization would need to be carried out in

a space with at least 10150 dimensions, which is considerably above current process-

ing capabilities. Therefore, HF-methods are limited to systems with few involved

electrons (N ≈10). This restriction is commonly referred to as the exponential wall

because of the exponential factor in equation 2.45 [69]. The energy determined by

HF calculations is never exactly the same as the ground state energy because a many

electron wave function cannot be completely represented by a single Slater deter-

minant. The Hartree-Fock-limit is the most precise energy that can be calculated

using HF-methods [67].

2.4 Correlation energy

No single determinant or straightforward combination of a few determinants can

ever accurately describe the wave function for a system with many interacting elec-

trons. The calculation of the energy error, however, is here characterized as being
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negative. The difference between EHF and Eexact is called correlation energy and

can be denoted as [70],

EHF
corr = Emin − EHF (2.49)

When atomic and molecular changes preserve the number and type of chemical

bonds, correlation energy tends to remain constant, but it can fluctuate significantly

and become decisive when bonds change. Its magnitude can range from a few

hundredths of an atomic unit to hundreds of kilocalories per mole. Exchange energies

are an order magnitude or more bigger, even if the self exchange term is omitted.

Despite the fact that Ecorr is usually small against Emin as in the example of a N2

molecule where

EHF
corr = 14.9 eV 〈 0.001 Emin (2.50)

It can have a huge influence. For instance, the experimental dissociation energy of

the N2 molecule is,

Ediss = 9.9 eV 〈 Ecorr (2.51)

which corresponds to a large contribution of the correlation energy to relative en-

ergies which are of particular interest in quantum chemistry [71]. The mean field

approximation utilized in the HF-method is what contributes most to the correla-

tion energy. The implication of this is that one electron moves in the average field

of the other ones, a method that completely ignores the inherent correlation of the

electron movements. To get a better understanding what that means, one may pic-

ture the repulsion of electrons at small distances which clearly cannot be covered by

a mean-field approach like the Hartree-Fock-method.

16



Chapter 3

Density Functional Theory

In an electronic system, the number of electrons per unit volume in a given state is

the electron density for a state designated by ρ(r). Its formula in terms of Ψ is

ρ(r1) = N

∫
...

∫
|ψ(x1, x2....xN)|2 ds1dx2...dxN (3.1)

This is a non negative simple function of three variables x, y, z integrating to the

total number of electrons,

N =

∫
ρ(r) dr (3.2)

For an atom in its ground state the density decreases monotonically away from the

nucleus [72]. The electron density at any atomic nucleus in an atom, molecule, or

solid has a finite value. Hohenberg and Kohn pointed out that if one knows the

density of the ground state of a many electron system, one can deduce from it the

external potential in which the electrons reside, up to an overall constant [73]. It

must be kept in mind that the only ways in which two many electron problem can

differ are in the external potentials U and in the number of electrons that reside

in the potentials. According to this results, both of these external parameters are

determined by the electron density, so one can say that the density completely deter-

mines the many body problem. This statement is surprising, because the density is
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a real function of a single spatial variable while complete quantum mechanical wave

function needs N variables for its description. The starting point of the theory is the

observation of Hohenberg and Kohn that electron density contains in principle all

the information contained in a many electron wave function. The electronic density

of a many electron system at point ~r is defined to be

n(~r) = 〈Ψ|
N∑
l=1

δ(~r − ~Rl)|Ψ〉 (3.3)

= N

∫
d~r1....d~rN Ψ∗(~r1, ~r2....~rN) δ(~r − ~rl) Ψ(~r1....d~rN) (3.4)

3.1 Thomas-Fermi model

The assumptions stated by Thomas are that, electrons are distributed uniformly in a

six dimentional phase space for the motion of an electron at the rate of two for each

h3 of volume and that there is an effective potential field that is itself determined

by the nuclear charge and this distribution of electrons. The Thomas Fermi formula

for electron density can be derived from these assumptions [73]. Let us consider

the space devided into many small cubes, each of side l and volume ∆V = l3, each

containing some fixed number of electrons ∆N and we assume that the electrons in

each shell behave like indipendent fermions at the temperature 0K, with the cells

independent of one another. The energy level of a particle in a three dimensional

infinite well are given by the formula [73]

ε (nx, ny, nz) =
h2

8ml2
(
n2
x + n2

y + n2
z

)
(3.5)

=
h2

8ml2
R2 (3.6)

Where nx, ny, nz = 1, 2, 3... and the second equality defines by the quantity R. For

high quantum numbers, that is, for large R, the number of distinct energy levels

with energy smaller than ε can be approximated by the volume of one octant of a
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spherical with radius R in the space (nx, ny, nz). This number is,

φ(ε) =
1

8

(
4πR3

3

) [
∵ R =

(
8ml2ε

h2

) 3
2

]
(3.7)

=
π

6

(
8ml2ε

h2

) 3
2

(3.8)

The number of energy levels between ε and ε+ δε is accordingly

g(ε)∆ε = φ(ε+ δε)− φ(ε) (3.9)

=
π

4

(
8ml2ε

h2

) 3
2
ε
1
2

δε+O
(
(δε)2

)
(3.10)

where the function g(ε) is the density of states at energy ε. To compute the total

energy for the cell with ∆N electrons, we need the probability for the state with

energy ε to be occupied which we call f(ε). This is the Fermi Dirac distribution.

f(ε) =
1

1 + eβ(ε−µ)
(3.11)

which at 0K reduces to a step function:

f(ε) =

1 ε 〈 εf

0 ε 〈 εf

as β → 0

where εf is the Fermi energy. All the states energy smaller than εf are occupied

and those with energy greater than εf are occupied. The Fermi energy εf is the zero

temperature limit of the chemical potential µ. Now we find the total energy of the

electrons in this cell by summing the contributions from the different energy states:

∆E = 2

∫
ε f(ε) g(ε) dε (3.12)

= 2

∫
ε f(ε)

π

4

(
8ml2

h2

) 3
2
ε
1
2

dε (3.13)

=
8π

5

(
2m

h2

) 3
2

l3ε
5
2
f (3.14)
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where the factor 2 enters because each energy level is doubly occupied by one electron

with spin α and another with spin β. The fermi energy Ef is related to the number

of electrons ∆N in the cell through the formula

∆N = 2

∫
f(ε) g(ε) dε (3.15)

=
8π

3

(
2m

h2

) 3
2

l3ε
3
2
f (3.16)

Eleminating εf from 3.15 and 3.16 we have

∆E =
3

5
∆N Ef (3.17)

=
3h2

10m

(
3

8π

) 2
3

l3
(

∆N

l3

) 5
3

(3.18)

Equation 3.18 is a relation between total kinetic energy and the electron density ρ

= ∆N
l3

= ∆N
∆V

for each cell in the space. Adding the contribution from all cells we

find the total kinetic energy to be, now reverting to atomic units,

TTF [ρ] = CF

∫
ρ

5
3 (~r) d~r (3.19)

where

CF =
3

10

(
3π2
) 2

3 = 2.871 (3.20)

Here, we first come across the LDA [74], one of the most significant concepts in

contemporary density functional theory. By using locally applicable relations suited

for a homogeneous electronic system, electronic characteristics are approximated as

functions of the electron density. In terms of electron density, the energy formula

for an atom is

TTF [ρ(~r)] = CF

∫
ρ

5
3 (~r) d~r − Z

∫
ρ(~r)

~r
d~r +

1

2

∫∫
ρ(~r1)ρ(~r2)

|~r1 − ~r2|
d~r1d~r2 (3.21)

This is the energy functional of Thomas-Fermi theory of atoms. The method became

considered as an overly simplified model of little real significance for quantitative

predictions in atomic, molecular, or solid state physics because the accuracy for
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atoms is not as high with this model as it is with other methods.

3.2 Hohenberg-Kohn Theorem

For an electronic system described by the Hamiltonian

Ĥ =
N∑
i=1

(−1

2
~∇i)

2 +
N∑
i=1

V (~ri) +
N∑
i<j

1

~rij
(3.22)

both the ground state energy and the ground state wave function are determined

by the minimization of energy functional E[Ψ].

E[Ψ] =

〈
Ψ|Ĥ|Ψ

〉
〈Ψ|Ψ〉

, E[Ψ] ≥ E0 (3.23)

But for an N electron system, the external potential v(~r) completely fixes the Hamil-

tonian, thus N and v(~r) determines all properties for the ground state.

3.2.1 Theorem 1

First Hohenberg-Khon theorem legitimizes the use of electron density ρ(~r) as basic

variable. Since ρ determines the number of electrons, it follows that ρ(~r) also de-

termines the ground state wave function Ψ and all other electronic properties of the

system. Where v(~r) is not restricted to coulomb potential. It states

Statement: The external potential v(~r) is determined within a trival additive con-

stant by the electron density ρ(~r). [72]

Proof: The proof of this theorem of Hohenberg and Khon is desarmingly simple.

Al that is employed is the minimum energy principle for the ground state. Let us

consider the electron density ρ(~r) for the non degenerated ground state of some N

electron system. It determines N by simple quardrature. It also determines v(~r)

hence all the properties of the system. For if there were two external potentials v

and v′ differing by more than a constant, each giving the same ρ for its ground state.

We would have two Hamiltonians H and H ′ whose ground state densities are same
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althrough the normalized wave functions Ψ and Ψ′ would be different. Taking Ψ as

a trial function for the H problem, we would have then from 3.24

Eo 〈 〈Ψ′|H|Ψ′〉 = 〈Ψ′|H ′|Ψ′〉+ 〈Ψ′|H −H ′|Ψ′〉 (3.24)

= E ′0 +

∫
ρ(~r) [v(~r)− v′(~r)] d~r (3.25)

where Eo and E ′o are the ground state energies for H and H ′ respectively. Similarly

taking Ψ as trial function for the H ′ problem

E ′o 〈 〈Ψ|H ′|Ψ〉 = 〈Ψ|H|Ψ〉+ 〈Ψ|H ′ −H|Ψ〉 (3.26)

= E0 −
∫
ρ(~r) [v(~r)− v′(~r)] d~r (3.27)

From equation 3.25 and 3.27,

E0 + E ′0 〈 E ′0 + E0 (3.28)

Its a contradiction. So there can not be two different v that give the same ρ for there

ground state. Thus ρ determines N and v and hence all properties of the ground

state, for example the kinetic energy T [ρ] the potential energy V [ρ] and the total

energy E[ρ]. So the writting Ev for E to make explicit the dependence on V .

Ev[ρ] = T [ρ] + Vee[ρ] + Vne[ρ] (3.29)

= FHK [ρ] +

∫
ρ(~r)v(~r) d~r (3.30)

Where

FHK [ρ] = T [ρ] + Vee[ρ] (3.31)

We may write

Vee[ρ] = J [ρ] + non-classical term

Where J [ρ] is the classical repulsion that can be represented as,

J [ρ] =
1

2

∫∫
1

~r12

ρ(~r1)ρ(~r2) d~r1d~r2 (3.32)
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The nonclassical term is a very exclusive term. It is the major part of exchange

correlation energy.

3.2.2 Theorem 2

The second Hohenberg Khon theorem provides the energy variational principle. It

reads:

Statement: For a trial density ρ(~r), such that ρ(~r) ≥ 0 and
∫
ρ(~r) d~r = N

E0 ≤ Ev[ρ] (3.33)

Where Ev[ρ] is the energy functional. Originally this second theorem has been

proved by variation calculus, [75] the proof provided subsequently is a different

one, namely the so called constrained-search approach, introduced by Levy and

Lieb [6, 7] and subsequently thoroughly examined in the books by Parr, Yang as

well as Kryachko and Ludena [76,77].

Proof: The previous theory assures that ρ̃ determines its own ṽ, Hamiltonian H̃,

and wave function Ψ̃, which can be taken as a trial function for the problem of

interest having external potential v. Thus,

〈
Ψ̃|Ĥ|Ψ̃

〉
=

∫
ρ̃(~r)v(~r) + FHK [ρ̃] = Ev[ρ̃] ≥ Ev[ρ] (3.34)

Assuming differentiability of Ev[ρ], the variation principle requires that the ground

state density satisfy the stationary principle

δ{Ev[ρ]− µ[

∫
ρ(~r)d~r −N ]} = 0 (3.35)

Which gives the Euler-Lagrange equation,

µ =
δEv[ρ]

δρ(~r)
= v(~r) +

δFHK [ρ]

δρ(~r)
(3.36)

The quantity µ is the chemical potential. If we know the exact FHK [ρ], above equa-
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tion could be an exact equation for the ground state electron density. When we say

that all ground state properties are functionals of electron density, we need to un-

derstandthese functionals are defined only for v representable densities of particular

importance is the functional FHK [ρ] of FHK [ρ] = T [ρ] + Vee[ρ],

FHK [ρ] = 〈Ψ|T + Vee|Ψ〉 (3.37)

Where, Ψ is the ground state wave function associated with ρ, which has to be

v-representable. The second Hohenberg-Khon theory simply states that for all v-

representale densities.

Ev[ρ] ≡ FHK [ρ] +

∫
ρ(~r)v(~r) d~r ≥ Ev[ρ0] (3.38)

Where, Ev[ρ0] is the ground state energy of the Hamiltonian with v(~r) as external

potential and ρ0 is the ground state density. So the minimum energy principle for

the ground state gives,

〈
Ψρ0|Ĥ|Ψρ0

〉
≥

〈
Ψ0|Ĥ|Ψ0

〉
(3.39)

3.3 Kohn-Sham Equation

Kohn and Sham proposed introducing orbitals into the problem in such a way that

the kinetic energy can be computed simply to good accuracy leaving a small residual

correction that is handeled seperately. To understand what is involved and what

khon Sham did, it is convenient to begin with the exact formula for the ground state

kinetic energy.

T =
N∑
i

ni

〈
ψi| −

1

2
~∇2|ψi

〉
(3.40)

Where ψi and ni are respectively, natural spin orbitals and there occupation num-

bers. The pauli principle requires that 0 ≤ ni ≤1. We are assured from the Hohen-
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berg Khon theory theory that T is a functional of he total energy density.

ρ(~r) =
N∑
i

ni
∑
s

|ψi(~r, ~s)|2 (3.41)

For any interacting system of interest, there are an infinite number of terms in

equation 3.40 and 3.41 which is ponderous at best. Kohn and Sham showed that

one can build a thory using simplier formulas, namely

Ts[ρ] =
N∑
i

〈
ψi| −

1

2
~∇2|ψi

〉
(3.42)

and

ρ(~r) =
N∑
i

∑
s

|ψi(~r, ~s)|2 (3.43)

Equation 3.42 and 3.43 are the special cases of equation 3.40 and 3.41 having ni=1

for N orbitals and ni= 0 for the rest. This representation of Kinetic energy and

density holds true for the determinental wave function that exactly describes N non

interacting electrons. We know that, any normalized and continious non negative

density is N representable and always can be decomposed according to equation

3.43. But given a ρ(~r), how can we have a unique decomposition in terms of or-

bitals so as to give a unique value to Ts[ρ] through equation 3.42. In analogy with

the Hohenberg-Khon definition of the universal functional FHK [ρ] Khon and Sham

invoked a corresponding non interacting reference system with the Hamiltonian

Ĥs =
N∑
i

(
−1

2
~∇2
i

)
+

N∑
i

vs(~r) (3.44)

In which there are no electron electron repulsion terms and for which the ground

state electron density is exactly ρ. For this system there will be an exact determi-

nantal ground state wave function

Ψs =
1√
N !

det [ψ1, ψ2......ψN ] (3.45)
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And the ψi are the N lowest eigenstates of the electron electron Hamiltonian Hs:

Ĥsψi = [−1

2
∇2 + Vs(~r)]ψi = εiψi (3.46)

The Kinetic energy is Ts[ρ], given by equation 3.42

Ts[ρ] =

〈
ψs|

N∑
i

(−1

2
~∇2
i )|ψs

〉
(3.47)

=
N∑
i

〈
ψi| −

1

2
~∇2
i |ψi

〉
(3.48)

and the density is decomposed as in equation 3.43. The forgoing definition of Ts[ρ]

leaves an undesirable restriction on the density. Its need to be non interacting v

representable. That is, there must exist a non interacting ground ground state with

the given density ρ(~r). This restriction on the domain of definition of Ts[ρ] can be

lifted and Ts[ρ] of the form of equation 3.42 can be defined for any density derived

from an anti-symmetric wave function. The quantity Ts[ρ], althrough uniquely de-

fined for any density, its not still the kinetic energy functional T [ρ]. The very clear

idea of Khon and Sham is to set up a problem of interest in such a way that Ts[ρ]

is its kinetic energy component exactly. The resultant theory turns out to be of

independent particle form.

Exc[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ] (3.49)

The defined quantity Exc[ρ] is called the exchange correlation energy. It contains

the difference between T and Ts, presumably fairly small and the non classical part

of Vee[ρ]. The Euler equation then can be written in terms of effective potential.

µ = veff (~r) +
δTs[ρ]

δρ(~r)
(3.50)
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Where Khon Sham effective potential is defined by,

veff (~r) = v(~r) +
δJ [ρ]

δρ(~r)
+
δExc[ρ]

δρ(~r)
(3.51)

= v(~r) +

∫
ρ(~r′)

|~r − ~r′|
+ Vxc(~r) (3.52)

Where Vxc(~r) = δExc[ρ]
δρ(~r)

is the exchange correlation potential. Equation 3.52 with

the constraints
∫
ρ(~r)d(~r) = N is precisely the same equation as one obtains from

conventional density functional theory when one applies it to a system of non in-

teracting electrons moving in an external potential Vs(~r) = Veff (~r). For a given

veff (~r), one obtains the ρ(~r) that satisfies equation 3.52 simply by solving the N

one electron equations.

[−1

2
~∇2 + Veff (~r)] ψi = εiψi (3.53)

and setting

ρ(~r) =
N∑
i

∑
s

|ψi(~r, ~s)|2 (3.54)

In above two equations the solutions ψi can be different this is because equations

are non linear and must be solved iteratively. The total energy can be determined

from the resultant density via equation

E[ρ] = Ts[ρ] + J [ρ] + Exc[ρ] +

∫
ρ(~r)V (~r)d~r (3.55)

E[ρ] =
N∑
i

∑
s

∫
ψ∗i (~r)(−

1

2
~∇i

2
)ψi(~r)d~r + J [ρ] + Exc[ρ] +

∫
ρ(~r)V (~r)d~r (3.56)

Hence,

N∑
i

εi =
N∑
i

+

〈
ψi| −

1

2
~∇2 + Veff (~r)|ψi

〉
(3.57)

= Ts[ρ] +

∫
Veff (~r)ρ(~r)d~r (3.58)

Just as in Hartree-Fock theory, the total electronic energy is not the sum of the

orbital energies.
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3.3.1 Solving Khon-Sham equation

In a condensed matter system the KS equation gives a way to obtain the exact

density and energy of the ground state. The process starts with an initial electron

density n(r), usually a superposition of atomic electron density, then the effective

KS potential VKS is calculated and the KS equation is solved with single-particle

eigenvalues and wavefunctions, a new electron density is then calculated from the

wavefunctions.

Start

Initial guess: n(~r)

Calculate effective potential:

Veff (~r) = Vext(~r) +VHartree[n] +VXC [n]

Solve Kohn-Sham equation:

(− ~2
2m
∇2 + Veff (~r))]ψi(~r) = Eiψi(~r)

Calculate the density:

n(~r) =
∑N

i=1 |ψi(~r)|
2

Self consistent

Energies, Forces, Stress,

Geometric optimization

Stop

Yes

No

This is usually done numerically through some self consistent iteration as shown in

above flowchart. Self-consistent condition(s) can be the change of total energy or

28



Density Functional Theory

electron density from the previous iteration or total force acting on atoms is less

than some chosen small quantity, or a combination of these individual conditions.

If the self-consistency is not achieved, the calculated electron density will be mixed

with electron density from previous iterations to get a new electron density. A new

iteration will start with the new electron density. This process continues until self-

consistency is reached. After the self-consistency is reached, various quantities can

be calculated including total energy, forces, stress, eigenvalues, electron density of

states, band structure, etc..

3.4 Local Density Approximation (LDA)

The Khon Sham equation while exactly incorporating the kinetic energy Ts[ρ], still

leave the exchange correlational functional Exc[ρ] unsetteled. In Khon Sham equa-

tion let us introduce the local density approximation proposed by Khon and Sham.

The kinetic energy Ts[ρ] is regorously treated in the Kohn Sham schame, we can

use the uniform electron gas formula solely for the unknown part of the rest of the

energy functional. Thus we introduce the local density approximation (LDA) for

exchange and correlation energy.

ELDA
xc [ρ] =

∫
ρ(~r)εxc(ρ) d~r (3.59)

Where εxc[ρ] indicates the exchange and correlation energy per particle of a uniform

electron gas of density ρ. The corresponding exchange correlation potential then

becomes,

V LDA
xc (~r) =

δELDA
xc [ρ]

δρ(~r)
(3.60)

= εxc(ρ(~r)) + ρ(~r)
δExc[ρ]

δρ(~r)
(3.61)

and the Khon Sham orbital equations read,

[−1

2
~∇2 + V (~r) +

∫
ρ(~r′)

|~r − ~r′|
d~r′ + V LDA

xc (~r)]Ψ = εiΨi (3.62)
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This self consistent solution defines the KS local density approximation, which is

the literature is usually simply called Local Density Approximation (LDA) method.

The function εxc(ρ) can be devided into exchange and correation contributions,

εxc(ρ) = εx(ρ) + εc(ρ) (3.63)

The exchange part is already known given by the Dirac exchange energy functional.

εx(ρ) = −Cx ρ
1
3 (~r) (3.64)

where

Cx =
3

4

(
3

π

) 1
3

(3.65)

3.5 Local Spin Density Approximation (LSDA)

The spin density functional theory is the necessary generalization for the system

in the presence of an external magnetic field. It is also exceedingly important for

the systems in the absence of a magnetic field, because it allows one to build more

physics into the exchange correlation functional through its spin dependence. In the

presence of a magnetic field B(~r) that acts only on the spins of the electrons, the

Hamiltonian of the system then becomes

H = −1

2

N∑
i

~∇2
i +

N∑
i

V (~ri) +
N∑
i<j

1

~rij
+ 2Be

N∑
i

B(~r).Si (3.66)

Where, Be = e~
2mc

is the Bohr magneton and Si is the electron angular momentum

vector for the ith electron. The added magnetic interaction is still a one-electron

operator, just like the nuclear potential V (~r). We can combine turms in the following

convenient way,

V̂ =
N∑
i

V (~ri) + 2Be

N∑
i

B(~r).Si (3.67)

=

∫
v(~r)ρ(~r)d~r −

∫
B(~r)m(~r)d~r (3.68)
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Where ρ(~r) is the operator for electron density

ρ(~r) =
N∑
i

δ(~r − ~ri) (3.69)

and m(~r) is the operator for the electron magnetization density.

m(~r) = −2Be

N∑
i

Si δ(~r − ~ri) (3.70)

Both ρ(~r) and m(~r) are local operators. The expectation value of V for the state

|Ψ〉 is given by 〈
Ψ|V̂ |Ψ

〉
=

∫
v(~r)ρ(~r)d~r −

∫
B(~r)m(~r)d~r (3.71)

when the electron density is given by

ρ(~r) = 〈Ψ|ρ(~r)|Ψ〉 (3.72)

and the magnetization density by,

m(~r) = 〈Ψ|m(~r)|Ψ〉 (3.73)

We shall discuss only the simple case of z direction b(~r). We then have

〈
Ψ|V̂ |Ψ

〉
=

∫
v(~r)ρ(~r)d~r −

∫
b(~r)m(~r)d~r (3.74)

where

m(~r) = −2Be

〈
Ψ|

N∑
i

Sz(i)δ(~r − ~ri)|Ψ

〉
(3.75)

= −2Be

∫
Sz(i)δ(~r − ~ri) γ1(x′, x′) dx′ (3.76)

= −2Be

∑
s=α,β

Sz γ1(~rs, ~rs) (3.77)

= −2Be [
1

2
γ1(~rα, ~rα) + (−1

2
)γ1(~rβ, ~rβ)] (3.78)

= Be ρβ(~r)− ρα(~r)] (3.79)
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We obtain the spin density functional theory by breaking the minimum search for

the ground state energy into two steps, namely

E0 = min
Ψ

〈
Ψ|T + Vee +

N∑
i

U(~ri) + 2βe

N∑
i

b(~ri).Sz(i)|Ψ

〉
= min

ρα,ρβ
{ min

Ψ→ρα,ρβ
〈Ψ|T + Vee〉+

∫
[v(~r)ρ(~r)−

∫
b(~r)m(~r)] d~r}

= min
ρα,ρβ

{F [ρα, ρβ] +

∫ [
(V (~r) +Beb(~r))ρ

α(~r) + (V (~r)−Beb(~r)ρ
β(~r)

]
d(~r)}

Where

F [ρα, ρβ] = min
Ψ→ρα,ρβ

〈Ψ|T + Vee|Ψ〉 (3.80)

This provides constraint search formulation of the universal functional F [ρα, ρβ].

The functional F [ρα, ρβ] searches all Ψ that yeald the input ρα(~r) and ρβ(~r), then

F [ρα, ρβ] assums the minimum of 〈T + Vee〉. However F [ρα, ρβ] is unknown and

approximation is necessary for the theory to be implemented. The Khon Sham

method now can be introduced to rigourously handle the kinetic energy contribution

to F [ρα, ρβ],

F [ρα, ρβ] = Ts[ρ
α, ρβ] + J [ρα + ρβ] + Exc[ρ

α, ρβ] (3.81)

Where Ts[ρ
α, ρβ] is the Khon Sham kinetic energy functional corresponding to a

system of non interacting electrons with densities ρα and ρβ and Exc[ρ
α, ρβ] is the

exchange correlation energy functional. A constrained search definition of Ts can

also be given as,

Ts[ρ
α, ρβ] = Min

∑
iα

niα

∫
d~r φ∗iα(~r)

(
−1

2
∇2

)
φiα~r (3.82)

Where the minimization is over the set of niα and φiα, with constraints,

∑
i

niα| φiα(~r)|2 = ρα(~r) (3.83)

∑
i

niβ| φiβ(~r)|2 = ρβ(~r) (3.84)
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Suppose the set of niα and φiα minimizes according to the constraint search formula,

then we may express the energy as a functionals of the orbitals φiα

E[ρα, ρβ] =
∑
iα

niα

∫
d~r φ∗iα (~r)

(
−1

2
∇2

)
φiα~r + J

[
ρα + ρβ] + Exc[ρ

α, ρβ
]

+

∫
[(V (~r) +Beb(~r))ρ

α(~r) + (V (~r)−Beb(~r)ρ
β(~r)]d(~r) (3.85)

The variation search for the minimum of E[ρα, ρβ] can then be carried out through

orbitals subject to normalization constraints

∫
φ∗iα(~r) φiα(~r) d(~r) = 1 (3.86)

The resulting Khon-Sham equations are,

hαeff φiα(~r) =

[
−1

2
~∇2 + V α

eff~r

]
φiα(~r) = εiα φiα(~r) (3.87)

and

hβeff φjβ(~r) =

[
−1

2
~∇2 + V β

eff~r

]
φjβ(~r) = εjβ φjβ(~r) (3.88)

Where the spin dependent effective potentials are

vαeff (~r) = v(~r) +

∫
ρ(~r′)

|~r − ~r′|
d(~r) +

δExc[ρ
α, ρβ]

δρα(~r)
+Beb(~r) (3.89)

vβeff (~r) = v(~r) +

∫
ρ(~r′)

|~r − ~r′|
d(~r) +

δExc[ρ
α, ρβ]

δρβ(~r)
−Beb(~r) (3.90)

In equation 3.89 and 3.90, the number of electrons with α spin and β spin,

Nα =

∫
ρα(~r)d~r, Nβ =

∫
ρβ(~r)d~r (3.91)

need also to be varried to acheive minimum total energy under the constraint,

N = Nα +Nβ (3.92)
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With the spin polarized KS equation, the kinetic energy is handeled exactly and only

the exchange correlation energy remains to be determined. The exchange-correlation

contribution can be seperated into exchange and correlation pieces,

Exc[ρ
α, ρβ] = Ex[ρ

α, ρβ] + Ec[ρ
α, ρβ] (3.93)

Where the exchange part is defined as,

Ex[ρ
α, ρβ] = −1

2

∫∫
1

~r12

{
|ρα,α1 (~r1, ~r2)|2 + |ρβ,β1 (~r1, ~r2)|2

}
d~r1d~r2 (3.94)

with

ρα,α1 (~r1, ~r2) =
∑
i

niα φiα(~r1) φ∗iα(~r2) (3.95)

ρβ,β1 (~r1, ~r2) =
∑
i

niβ φiβ(~r1) φ∗iβ(~r2) (3.96)

The niα and φiα are those giving the Khon Sham Kinetic energy, they are determined

by ρα and ρβ.

Ex[ρ
α, ρβ] =

1

2
Ex[ρ

α, ρα] +
1

2
Ex[ρ

β, ρβ] (3.97)

Ex[ρ
α, ρβ] =

1

2
Ex[ρ

α, ρα] +
1

2
Ex[ρ

β, ρβ] (3.98)

=
1

2
E0
x [2ρα] +

1

2
E0
x [2ρβ] (3.99)

where

E0
x[ρ] = Ex

[
1

2
ρ,

1

2
ρ

]
(3.100)

The Dirac local density approximation for exchange is for the spin compencated

case. From above equations, we obtain the local spin density approximation for the

exchange energy functionals.

ELSDA
x

[
ρα, ρβ

]
= 2

1
3 Cx

∫ [
(ρα)

4
3 + (ρβ)

4
3

]
d~r (3.101)
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Let us define the spin polarization parameter ξ by,

ξ =
ρα − ρβ

ρ
=
ρα − ρβ

ρα + ρβ
(3.102)

Thenρα = 1
2
(1 + ξ)ρ, ρβ = 1

2
(1− ξ)ρ and the LSD exchange energy becomes

ELSD
x [ρα, ρβ] =

1

2
Cx

∫
ρ

4
3

[
(1 + ξ)

4
3 + (1− ξ)

4
3

]
d~r (3.103)

=

∫
ρεx(ρ, ξ) d~r (3.104)

Where

εx(ρ, ξ) = ε0
x(ρ) +

[
ε1
x(ρ)− ε0

x(ρ)
]
f(ε) (3.105)

with the exchange density for the spin compensated homogeneous electron gas.

3.6 Generalized Gradient Approximations (GGA)

The LSDA neglects inhonogeneities of real charge density which could be deffer-

ent from the Homogeneous Electron Gas (HEG). The exchange correlation energy

density has significantly different result from HEG. This gives rise to the various

Generalized-Gradient Approximations (GGA) [78] which include density gradient

correlation and higher spatial dertiviatives of electron density and gives better re-

sult than LDA in many cases. Three most widely used GGA’s are the from propeosed

by Becke [79], Perdew et al. [80] and Perdew, Burke and Enzerhof [81]. For spin

polarized system [82] we know that

ELSDA
XC [n↑(r), n↓(r)] =

∫
n(r) εhomXC (n↑(r), n↓(r)) dr (3.106)

Where, XC energy density εhomXC (n(r)) is a function of the density alone and is

decomposed into exchange energy density εhomX (n(r)) and correlation energy density

εhomC (n(r)) . So that the XC energy functional is decomposed into exchange energy

functional ELDA
X [n(r)] and correlation energy functional ELDA

C [n(r)] linearly. From
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density gradient ∇n(r),

EGGA
XC [n↑(r), n↓(r)] =

∫
n(r) εhomXC (n↑(r), n↓(r), |∇n↑(r)|, |∇n↓(r)|, ...)dr (3.107)

=

∫
n(r) εhomX n(r))FXC(n↑(r), n↓(r), |∇n↑(r)|, |∇n↓(r)|, ...)dr (3.108)

Where FXC is dimensionless and εhomX n(r)) is the exchange energy density of the

unpolarized HEG. FXC can be decomposed linearly into exchange contribution Fc

as FXC = Fx + Fc. Generally GGA works better than LDA, in pridicting binding

energy of molecules and bond length, crystal lattice constants, especially the system

where charge density varried rapidly. In case of ionic crystall, GGA overcorrects

LDA results where the lattice constants of LDA fit well than GGA. But in case of

transition metal oxides and rare-earth element, both LDA and GGA parform badly.

This drawback leads to approximations beyond LDA and GGA.
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Chapter 4

K2SeCl6 at ambient pressure

K2SeCl6 is a vacancy-ordered double perovskite structure with an alternating ar-

rangement of potassium (K), selenium (Se), and chlorine (Cl) atoms. The vacancy

ordering refers to a specific arrangement of these atoms, where vacancies or empty

spaces are deliberately created in the crystal lattice. This ordered arrangement of

vacancies can trap charge carriers, leading to interesting electronic behavior. Materi-

als with vacancy-ordered double perovskite structures like K2SeCl6 are of interest in

various technological applications, including solid-state batteries, electronic devices,

quantum materials etc.

4.1 Computational details

The physical properties of vacancy-ordered double perovskite K2SeCl6 were investi-

gated based on Full Potential Linear Aaugmented Plane Wave (FP-LAPW) method

using Density Functional Theory (DFT) as implemented in WIEN2k [45] code. The

structural optimization and position minimization for anion were carried out to com-

pute the lattice constants and most stable crystal structure with a space group 225

(Fm3̄m). For self-consistant field (SCF) cycle Perdew-Burke-Ernzerhof Generalized-

Gradient-Approximation (PBE-GGA) method was used. The limit for charge con-
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vergence and energy convergence for the iteration process was set to 10−5 Ry and

10−4e, respectively. The value of the parameter RMT× Kmax, where RMT is the

muffin tin radius and Kmax is the plane wave cut off for reciprocal lattice vector,

was set to 8. The maximum values of the Gaussian factor, Gmax and the angular

momentum vector, lmax was 16 (a.u.)−1 and 10 respectively. The k-mesh was set to

4000 k points in the first Brillouin zone. For mechanical properties, Charpin method

was applied while Kramer-Krong model was used to calculate the optical charac-

teristics [90]. Thermoelectric properties were calculated using BoltzTraP [51] code

that employs rigid band approximation and classical Boltzman transport theory.

4.2 Structural stability

The crystallographic structure of K2SeCl6 is a vacancy-ordered double perovskite

containing isolated [SeCl6]2− octahedrons [91] and ordered vacancies, where K is

a monovalent cation, Se is a tetravalent cation and Cl is a halogen anion. The

compound crystalizes with the space group 225 (Fm3̄m) in a face centered cubic

lattice as represented in figure 4.1. The geometrical model contains octahedron of

Figure 4.1: Conventional unit cell of vacancy-ordered double perovskite K2SeCl6. The

light blue color balls signifies the K atoms, the green color balls show the Cl atoms and

the red color balls indicate the Se atoms respectively.
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SeCl6 with interestitial sites filed by K atoms. Octahedrons are seperated by 12-fold

coordinates of Cl atoms. Figure 4.1 shows that K and Se atoms are surronded by

12 and 6 halogen ions respectively. The K, Se, and Cl atoms have 8c Wyckoff sites

with (0.25, 0.25, 0.25) coordinates, 4a Wyckoff sites with (0, 0, 0) coordinates and

24e Wyckoff sites with (0.24, 0, 0) coordinates respectively. Volume optimization

calculation has been performed to find out the most stable structure with ground

state energy of the system. The system exhibits its highest stability with 10.153 Å,

demonstrating a notable resemblance to the reference theoretical work [92]. The

optimization scheme for total energy in Ry vs volume is represented in figure 4.2. To
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Figure 4.2: Calculated optimized energy vs volume plot of K2SeCl6.

evaluate the compound for practical application, structural and thermal stabilities

are needed to be investigated. For a perovskite, the ideal value for the Goldsmith

tolerance factor which pridicts the stability criteria for a material structure, ta is 1.

However the range from 0.96 to 1.04 is considered to be the best [93]. For K2SeCl6,
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tolerance factor is found to be 0.98 calculated by the equation [94],

ta =
rK + rCl√

2(rSe + rCl)
(4.1)

where rK , rCl, and rSe are the ionic radii of K, Cl, and Se respectively. It can be

seen that the tolerance factor of K2SeCl6 is within the range of perovskite phase

stability 0.96 ≤ ta ≤ 1.04 [95] which demonstrates the structural stability of the

compound. This fact can be further varified by calculating thermodynamic stability

by computing the formation energy, ∆H by the equation [92],

∆H = E(K2SeCl6)− 2E(K)− E(Se)− 6E(Cl) (4.2)

Where ∆H is the formation energy, E(K2SeCl6) is the total energy of the system,

E(K), E(Se), and E(Cl) are the total energies of K, Se, and Cl atoms respectively.

For K2SeCl6, formation energy is found to be −0.53 eV. The negative formation

energy indicates the thermodynamic stability of the compound.

4.3 Electronic properties

In order to determine the probable region for practical applications of the studied

compound, analysis of band structure and density of states is regarded to be essen-

tial. To verify the band gap dependent properties and intra band transitions, the

bandstructure, total and partial density of states are calculated and plotted in figure

4.3 to 4.5. Bandstructure shows, K2SeCl6 is a p type semiconducting material with

an indirect band gap of 2.502 eV. The valence band maxima is at W and conduc-

tion band minima is at L as can be seen from figure 4.3. Bandstructure is plotted

along with high symmetry points in the first Brillouin zone. Semiconductors having

bandgap greater than 2 eV is called wide band gap semiconductor [96]. It is evident

that compound K2SeCl6 is a wide band gap semiconductor having great potential

in optoelectronic applications. In bandstructure, the more states are present at the

valence band edge (much closer to the Fermi level than the conduction band) which

occurs due to comparatively large holes effective masses as compared to the elec-
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Figure 4.3: The calculated bandstructure using PBE approximation for K2SeCl6 at

ambient pressure.

trons. To understand the possible electronic transition from valence to conduction

band and hybridization among the constituent states, the total and partial density of

states are computed as shown in figure 4.4 and 4.5. The total and partial DOS shows

the total contribution of individual atoms and states in valence and conduction band

which is equivalent to the band structure. The individual K, Se, and Cl atoms have

electronic configuration as [Ar]4s1, [Ar]3d104s24p4, and [Ne]3s23p5 respectively. For

hybridization and inter-band transitions, only the valence electrons are responsible.

It is evident from figure 4.4 (a) that the valence band near the fermi level mostly

originated by Cl 3p states with a small contribution of Se 4p states (figure 4.5a).
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The conduction band minimum also originated by Cl 3p and Se 4p states. The en-

ergy bands above 5.27 eV (figure 4.4b) is mainly because of hybridized K 4s states

which can have a significant influence on the exibited physical properties. But only

the states composing the valence band maxima and conduction band minima are

responsible to originate the physical properties of a compound.
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So it can be said that for our computed system, the possible indirect transition can

be resulted from Cl 3p from valance band to Cl 3p and Se 4p in conduction band.

Therefore, the p-p hybridizations are responsible for excitation and recombination

for our system.
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4.4 Optical properties

The indirect band gap semiconducting property of K2SeCl6 reveals its potential for

optoelectronic and solar cell applications in visible region [97]. The optical proper-

ties of K2SeCl6 at ambient pressure were calculated and plotted in figure 4.6-4.8 to

understand the nature of light-matter interaction in that system. The electromag-

netic resonance between the incident light and the bound electrons in the valence

band has an impact on the optical response. When energy is encountered, the bound

electrons absorb it and move into the conduction band and the process of recombina-

tion is used to evaluate a material’s potential for optoelectronic applications [98,99].

In this study, we elaborated the complex dielectric function ε(ω), absorption coef-

ficient α(ω), optical conductivity σ(ω), reflectivity R(ω), and refractive index n(ω)

to understand band gap-dependent optical features of the compound. The complex

dielectric function can be calculated by the equation,

ε(ω) = ε1(ω) + iε2(ω) (4.3)

Where, ε1(ω) and ε2(ω) are the real and imaginary part of the dielectric function.

The real part explains the degree of polarization of a compound as a response to

electromagnetic wave interactions whereas the imaginary part indicates loss factor

or the absorption of incident light energy. The static values of ε1(ω) are related

with the threshold for optical absorption according to Penn’s model [100] that can

be represented by

ε1(0) ≈ 1 + (~ωp/Eg)2 (4.4)

Here, ωp and ~ are plasma frequency and reduced Plank’s constant respectively. The

values of ε1(ω) and ε2(ω) for the compound K2SeCl6 are plotted in figure 4.6. In

figure 4.6 (a), ε1(ω) increases by increasing photon energy and become highest at

3 eV. This peak predicts that the studied compound is fully polarized and at energy

5 eV, the negative value of ε1(ω) expresses the typical semiconducting nature in

visible region and changed to metallic after 5 eV in Ultra Violet region.
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Figure 4.6: The computed optical parameters a) Real dielectric function and b) Imagi-

nary dielectric function of K2SeCl6 at ambient condition.

The ε1(ω) and ε2(ω) are related through Kramer-Kroning relation [101]

ε1(ω) = 1 +
2

π
P

∫ ∞
0

ω′ε2(ω′)

ω′2 − ω2
(4.5)

ε2(ω) =
e2h

πm2ω2

∑
v,c

∫ ∞
BZ

|Mcv(k)|2 δ[ωcv(k)− ω]d3k (4.6)
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where P and k shows the principle quantum number and wave vector respectively.

The h is a Plank constant, ω is the angular frequency, and M is the molar mass of

the carriers.
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Figure 4.7: a) Absorption coefficient and b) Optical conductivity of K2SeCl6 at ambient

condition.

The imaginary dielectric function shows the light absorption probability of the com-

pound when a light of suitable energy falls on it. Threshold value of light absorption
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is proportional to the optical band gap and after this threshold energy, absorption

of light starts. For K2SeCl6, this threshold is 2.502 eV as can be seen from figure

4.6 (b) which agree to the electronic band gap extracted from band structure. The

value of ε2(ω) reaches to a maximum at the boundary of visible region ranging from

3 to 4 eV.
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Figure 4.8: a) Optical reflectivity and b) Refractive index of K2SeCl6 at ambient condi-

tion.

The second peak occurs at energy 4.5 eV in ultraviolet region. The absorption
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coefficient α(ω) also measures the light absorption incident on the studied material

as plotted in figure 4.7 (a). α(ω) can be calculated by the following equation,

α(ω) =
√

2
ω

c
{
√
ε2

1(ω) + ε2
2(ω)− ε1(ω)}

1
2 (4.7)

The incident energy below the bandgap can not cause any electronic transition from

valence band to conduction band. The extracted absorption edge 2.5 eV for the

compound K2SeCl6 is found consistent with the electronic band gap. Both absorp-

tion coefficient and imaginary dielectric constant are analogous to each other since

both explains absorption of light. After threshold, as photon energy increases, α(ω)

reaches its first peak at 3.5 eV and second peak at 5 eV. After 5 eV, absorption

coefficient starts decreasing with further increase in photon energy. The electrical

conductivity σ(ω) in figure 4.7 (b) illustrates the optical current generated due to

liberated free carriers as a result of incident energy. The incident photon energy

excites valence electrons to move to the conduction band which determines the elec-

tical or optical conductivity of the compound. The first peak in optical conductivity

occurs at 3.5 eV and second peak at 4.5 eV which is analogous to the absorption

coefficient. When light falls on a material, absorption, reflection and transmission

occurs simultaneously. For inventigating the reflected light from the surface, reflec-

tion coefficient R(ω) can be computed by the equation,

R(ω) =
− iω (ε2(ω)− 1)

4π
(4.8)

For K2SeCl6, optical reflectivity has been calculated and plotted in figure 4.5 (e).

With the increment of photon energy, reflectivity increases and becomes maximum

(50%) at 5 eV. At visible region maximum reflectivity is 30%. Such a small value of

R(ω) is considered to have a small influence on the performance of practical devices.

The refractive index n(ω), sensitive to the wavelength, group velocity and nature of

the material expresses the energy dispertion of the materials is analogous to the real

dielectric function of the material is also calculated and plotted against the photon

energy in figure 4.8 (b). The computed n(ω) exibits maxima at 3 eV and minima

at 5.5 eV for the studied compound. Refractive index n(ω) and ε1(ω) are related to
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each other according to the expression n2 − k2 = ε1(ω). Therefore zero frequency

values of the refractive index and real dielectric constant ε1(0) satisfy the equation

n2
0 = 0. However the optical properties of K2SeCl6 at ambient pressure reveals that

the compound has the potential for the optical device application in the visible and

ultra violet region.

4.5 Thermoelectric properties

In order to explore the electric transport behavior, it is important to understand the

thermoelectric properties of various substances. Thermoelectric materials have been

thoroughly studied for energy harvesting applications in the last few decades [102].

Several important characteristics, such as temperature-dependent electrical conduc-

tion, can be used to analyze the performance of any thermoelectric material with a

certain band gap [103]. The thermoelectric properties of K2SeCl6 has been examined

by calculating electrical conductivity (σ/τ), seebeck coefficient (S), thermal conduc-

tivity (κe/τ), power factor (PF = σS2/τ), and figure of merit (ZT = σS2/κτ) [104]

as plotted in figure 4.9 to 4.11. Here τ is the relaxation time, which for a typical

semiconductor has a constant value with an order of 10−14 s. For our computed sys-

tem, no experimental measurement of τ has been found. In a compound, the flow of

charge through the material can be measured by the electrical conductivity. For an

effective thermoelectric device, materials should have high electrical conductivity to

minimise the Joule heating effect [105]. The computed electrical conductivity per

relaxation time (σ/τ) for K2SeCl6 is represented in figure 4.9 (a) as a function of

the temperature ranges from 100K to 1000K. Since a number of variables, includ-

ing charge carrier concentration, charge magnitude, and mobility affect electrical

conductivity, figure shows the conductivity of the compound increases linearly with

temperature, which signifies an increase in the carrier concentration associated with

electrical conduction. From figure, breaking bonds and creating electron hole pairs

with enough energy to significantly contribute to electrical conduction is possible

even at 100K. The increase in electrical conductivity expresses continuously in-

creasing carrier concentration, which indicates a negative temperature coefficient of
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resistivity, is demonstrated and supports the examined compound’s semiconductor

nature.
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Figure 4.9: The calculated a) Electrical conductivity (σ/τ) and b) Thermal conductivity

(ke/τ) for K2SeCl6 at ambient condition as a function of temperature (T).

At 100K, K2SeCl6 has a minimum value of σ/τ , which indicates its suppressed

charge carriers mobility that may be related to its wide band gap. The thermal

conductivity κe/τ in figure 4.9(b) exhibits a similar pattern as for σ/τ results from

increasing temperature that enhances the kinetic energy of the carriers. For any
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thermoelectric material, an optimized value of electronic and thermal conductivities

is required to exhibit higher thermoelectric efficiency.
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Figure 4.10: The calculated a) Seebeck coefficient (S) and b) Power factor (PF) of

K2SeCl6 at ambient condition as a function of temperature (T).

The κ/τ has electronic κe/τ and lattice κl/τ contributions respectively. Here we have

elaborated κe/τ only. For illustration of performance, from the Wideman Franz law

κe/σ factor having value in the range 10−6 ensure the comparative contribution of
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σ/τ is more than κe/τ . For our system, κe/τ improves from 0 to 6×1014 W/mKs at

1000K. Seebeck coefficient (S) determines the ability of a material to generate the

electromotive force from the applied temperature gradient through the material, in

other word, it indicates the effectiveness of the thermocouples [106]. The electronic

movement causes thermoelectromotive force which produces voltage in microvolt per

kelvin.
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Figure 4.11: Calculated Figure of Merit (ZT) of K2SeCl6 at ambient condition as a

function of temperature (T).

For better thermoelectric efficiency, we need the large value of Seebeck coefficient

(S). Seebeck coefficient can be eleborated by the Piserenko relation [107,108]

S = 8π2kBm
∗T (3eh2)−1(

π

3ρ
)
2
3 (4.9)

Where, kB shows Boltzman constant, m∗ is the effective mass, e is charge carriers,

h is Plank’s constant, ρ express carriers concentration and T represents absolute

temperature. In figure 4.10 (a), Seebeck decreases from 300 µV/K to 190 µV/K at

1000K temperature. Because in this temperature range, increasing σ/τ decreases

the potential barrier. The value of S ≥ 200 µV/K are indicative of the excillent ther-

moelectric materials [109]. In our calculation, 214 µV/K is found for the seebeck
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Table 4.1: The depicted values of Electrical conductivity (σ/τ), Thermal conductivity

(κe/τ), Seeback coefficient (S), Power factor (PF), and Figure of Merit (ZT) for K2SeCl6
at ambient pressure and room temperature (300 K).

Specification σ/τ ke/τ S PF ZT

(×1019Ωms) (×1014W/mK) (µV)/K (×1011 W/mK2s)

K2SeCl6 0.391 0.692 214 1.809 0.784

coeeficient at room temperature which is remarkably outstanding to the mentioned

value. Therefore the studied double perovskite material has excillent potential for

thermoelectric application. The efficiency of a thermoelectric material without in-

cluding thermal conductivity can be explained using power factor (PF = σS2/τ)

that increases from 0.6 to 4.2×1011 W/mK2s at 1000K temperature (figure 4.10 b).

For a more accurate evaluation of the thermal to electrical energy conversion, the

figure of merit (ZT = σS2/κτ) also determined and plotted in figure 4.11 for the

temperature ranges from 0 to 1000K. At 100K ZT is 0.87 for K2SeCl6 and decreases

with temperature and exhibit 0.784 at 300K temperature. With further increment

of temperature, ZT decreases gradually. Therefore, at room temperature and am-

bient pressure K2SeCl6 appears to be a relatively useful thermoelectric material for

practical applications.
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Chapter 5

Pressure dependent characteristics

of K2SeCl6

Pressure dependent studies reveals emergent phenomena, such as differences in opto-

electronic and thermoelectric properties of a compound, that are not present under

ambient conditions. Pressure can enhance or suppress charge carrier mobility, mod-

ify the activation energy for conduction, and induce changes in the thermoelectric

properties. Pressure dependent investigations provide insights into the charge trans-

port mechanisms and enable the design of materials with improved conductivity

under specific pressure conditions [110]. It offers chances to design and enhance ma-

terial properties for certain technological uses. Understanding and harnessing these

emergent phenomena under pressure can lead to the discovery of unique physical

properties and potential applications of a material.

5.1 Electronic properties

The impact of pressure on the electronic properties of a compound manifests as

alterations in its behavior under high-pressure conditions. These changes can sig-

nificantly affect electronic structure, band gap, conductivity, and other pertinent
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properties of the material. High pressure often prompts shifts in interatomic dis-

tances and lattice parameters, thereby inducing modifications in the electronic band

structure. Additionally, the application of high pressure can lead to phase transi-

tions or adjustments in the density of states within the electronic structure. Under

ambient conditions, the most stable configuration of K2SeCl6 is found with a lattice

parameter of 10.153 Å, demonstrating an indirect band gap of 2.502 eV.

Table 5.1: The obtained values of lattice parameter (Å) and band gap (eV) for K2SeCl6
under all applied pressures.

Pressure (GPa) Lattice Parameter (Å) Band Gap (eV)

0 10.153 2.502

5 9.737 2.545

10 9.486 2.508

20 9.168 2.307

40 8.805 2.067

60 8.582 1.799

80 8.423 1.568
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Figure 5.1: The reduction of lattice parameter and band gap of K2SeCl6 in response to

the applied pressure.
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Under applied pressure, both the lattice parameter and band gap undergo a gradual

decrease. At 80 GPa, the band gap decreases to the point where it approaches the

boundary of the visible energy region.
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Figure 5.2: The calculated band structures of vacancy-ordered double perovskite

K2SeCl6 under applied pressures ranging from 5 to 40 GPa.
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Figure 5.1 illustrates the reduction in lattice parameter and band gap as pressure

is applied, while Table 5.1 provides specific values for the lattice parameter and

band gap corresponding to each applied pressure. In order to verify the changes in

electronic properties induced by pressure, we performed computations for the band

structure, total, and partial density of states for K2SeCl6 up to 80 GPa, comparing

the results with the ambient condition, as shown in Figures 5.2 to 5.4. In Figures

5.2 and 5.3, the horizontal dotted line at 0 eV represents the Fermi level for all. At

0 GPa, K2SeCl6 exhibits an indirect band gap of 2.502 eV with a p-type semicon-

ducting nature. At 5 and 10 GPa, the band gap increased by 0.043 and 0.006 eV,
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Figure 5.3: The calculated band structures of the double perovskite K2SeCl6 under

applied pressures of a) 60 GPa and b) 80 GPa show a gradual decrease in the band gap

compared to ambient conditions as the applied pressure increases.

respectively, compared to 0 GPa. Beyond 20 GPa, there is an observed inverse re-

lationship between the band gap and external pressure [111]. This relationship may

intensify the potential between electrons and ions, contributing to a reduction in

the lattice parameter. As pressure continues to rise, the conduction band minimum

progressively approaches the Fermi level, leading to a decrease in the band gap. The

reduced gap facilitates easier movement of electrons from the valence band to the
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conduction band. This is evident in Figures 5.2 and 5.3, where an increase in in-

duced pressure correlates with a rise in the density of bands in the conduction region

and a gradual decrease in the valence band. Furthermore, the bands of K migrate

towards the conduction band, contributing to the reduction of the gap between 4 to

5 eV. Around 60 GPa, this gap completely vanishes due to the influence of energy

bands associated with K.
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for K2SeCl6 upto 80 GPa compared to ambient condition.
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Consequently, it can be affirmed that as pressure increases, a growing number of

electrons transition from the valence to the conduction bands, thereby enhancing

conductivity and other optoelectronic properties. These enhanced properties make

the material more favorable for various device applications. For a more detailed

explanation of the band structure, the total density of states (TDOS) for K2SeCl6

under all applied pressures has been computed and is illustrated in Figure 5.4 (a),

with a comparison to the 0 GPa condition.
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It’s noteworthy that K2SeCl6 maintains its p-type semiconducting nature under all

applied pressures, consistent with its behavior at 0 GPa. The sharp peaks in the

TDOS, when subjected to pressure, gradually shift downward, signifying a substan-

tial influence of pressure on the total density of states. The band gap undergoes a

reduction under pressure due to the shift in this peak, as observed in the band struc-

tures also. Figures 5.4 (b) and 5.5 represent the computed total densities of states for

K, Se, and Cl. This is done to elucidate potential band transitions from valence to

the conduction region and to highlight recombination among the constituent states.

It is noteworthy that only valence electrons participate in inter-band transitions and

hybridization. The total density plot of K, Se, and Cl makes it clear that the valence

band, particularly near the Fermi level, is primarily derived from Cl 3p states, with

a minor contribution from Se 4p states. Similarly, the conduction band minimum

is also predominantly influenced by Cl 3p and Se 4p states. In Figure 5.4 (b), with

increasing pressure, the K 4s orbitals within the conduction band shift downward,

forming a distinct peak between 2.502 to 4 eV energy bands, and exhibit a sharp

peak at 5 to 6 eV for 80 GPa. Figure 5.5 (a) illustrates the Total Density of States

(TDOS) for Se, indicating that the Se 4p orbital has a noteworthy contribution to

the lower valence energy region under ambient conditions. However, as pressure

rises, this contribution gradually diminishes both in the valence and conduction

bands. The gap between 4 to 5 eV experiences a gradual filling, primarily by a

substantial contribution from K 4s orbitals, accompanied by a minor presence of Cl

3p and Se 4p. As pressure increases, the Se 4p and Cl 3p orbitals descend, leading

to a reduction in the band gap of K2SeCl6. Consequently, the band gap decreases

from 2.502 eV to 1.568 eV under an applied pressure of 80 GPa.

5.2 Mechanical properties

Mechanical properties play a significant role in the engineering of materials for in-

dustrial use. This property can be elaborated by tension analysis by the non-linear

differential equation by Charpin method. Properties include second order elastic

constants (Cij), Bulk modulus, Young’s modulus, Shear modulus, Poisson’s ratio,
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Table 5.2: Calculated C11, C12, C44, Bulk modulus (B), Shear modulus (G),

Young’s modulus (E), Pugh’s ratio (B/G), Poisson’s ratio (ν), Cauchy pressure, Elastic

anaisotropy (A) and Debye temperature (θD) of K2SeCl6 at different hydrostatic pressure.

Specifications
Pressure (GPa)

0 5 10 20 40 60 80

C11(GPa) 54.840 101.322 132.398 183.509 269.115 328.997 318.360

C12(GPa) 13.803 19.292 24.645 33.313 46.864 57.674 68.003

C44(GPa) 12.969 16.815 17.085 21.371 34.973 41.411 47.296

B (GPa) 27.482 46.635 60.562 83.378 120.947 148.114 172.455

G(GPa) 15.207 24.251 27.653 36.400 56.807 68.228 78.334

E(GPa) 38.512 62.005 72.000 95.327 147.351 177.438 204.099

B/G 1.762 1.923 2.190 2.291 2.129 2.171 2.202

ν 0.270 0.278 0.301 0.309 0.296 0.300 0.302

C12 − C44 0.834 2.477 7.569 11.942 11.891 16.263 20.707

A 0.145 0.411 0.317 0.284 0.315 0.305 0.301

θD (K) 277.483 339.521 358.887 405.175 495.275 536.115 596.256

ductility, brittleness, anisotropy, elastic wave propagation, and other solid state phe-

nomena. For the material with a cubic symmetry, elastic constants C11, C12, and

C44 are sufficient to explain the whole mechanical property. Mechanical stability

should be examined by the Born elastic stability criteria [112] C11 > 0, C11 - C12

> 0, C11 + 2C12 > 0, C44 and C12 < B0 < C11. The calculated values of elestic

constants are represented in table 5.2. The positive values of the constants shows

the mechanical stability of the compounds under all pressure as well as in ambient

condition by satisfying born stablity criteria. Cauchy pressure [113], the difference

between C12 and C44 shows our system has metallic bonding under all pressure. The

information about the resistance to the volume change caused by external pressure

is provided by the isotropic bulk modulus. We employed Viogt-Russel-Hills approx-

imation [114–117] which makes use of C11 and C12 elastic constants to figure out the
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bulk modulus. Bulk modulus can be expressed mathmatically by the relation,

B =
C11 + 2C12

3
(5.1)

Shear modulus can be used to explain hardness and resistance to reversible defor-

mation. It can be seen below, one can determine the shear modulus by the equation,

G =
Gv +GR

2
(5.2)

where GR (Reuss’s shear modulus) is the lower limit of G and Gv (Voight’s shear

modulus) is the upper limit of G and are expressed as

Gv =
1

5
(3C44 + C11 − C12); Gv =

5(C11 − C12)C44

3(C11 − C12 + 4C44

(5.3)

With Bulk and Shear modulus, Young’s modulus can be calculated for the compound

by the relation,

E =
9BG

3B +G
(5.4)

Further the brittile and ductile nature of a compound can be understood by the

Pugh’s ratio (B/G) and Poisson’s ratio (ν) [118] which is an important property for

practical device febrication. The properties like ductility, striffness, brittileness etc

are considered from Pugh’s ratio and Poission’s ratio. The compound with a value

of B/G and ν heigher than 1.75 and 0.26 is considered to be ductile and supposed to

be applicable to device febrication. But Poisson’s ratio equal to 0.26 shows brittile

nature and less than 0.26, the compound is considered to be plastic [119]. It is clear

from table 5.1 that the values of ν and B/G for K2SeCl6 at ambient and under all

induced pressure has a value greater than 0.26 and 1.75 respectively which pridict

our studied compounds are ductile in nature and suitable for device febrication.

Further Zener’s anisotropy (A) [120,121] factor can be calculated from equation 5.5

to reveal the anisotropic nature of the compounds.

A =
2C44

C11 − C12

(5.5)
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In summary, when K2SeCl6 is subjected to an external pressure, its mechanical

stability increases gradually with decreased cell volume. Pugh’s ratio and Poisson’s

ratio shows highly ductile behavior at 80 GPa with some substantial influence on

the bond length. These mechanical stability permits the material to be an excillent

candidate for practical applications.

5.3 Optical properties

The influence of pressure on the optical properties of a material encompasses changes

in electronic transitions, alterations in lattice vibrations impacting phonon modes,

variations in density affecting the refractive index, and the potential for phase tran-

sitions. To comprehend the nature of light-matter interaction of our system for prac-

tical applications, we have calculated and plotted the optical properties of K2SeCl6

under induced pressure in Figures 5.6 to 5.8. In this study, we elaborated the com-

plex dielectric function ε(ω), absorption coefficient α(ω), optical conductivity σ(ω),

reflectivity R(ω), and refractive index n(ω) to illuminate band gap-dependent opti-

cal features upto 80 GPa applied pressure compared to 0 GPa. In Figure 5.6 (a),

the real dielectric function of K2SeCl6 is depicted under all applied pressures. It’s

noteworthy that a material exhibiting a higher ε1(0) signifies a lower rate of charge

recombination, leading to enhanced performance in optoelectronic devices [122]. Un-

der ambient pressure, K2SeCl6 displays its initial peak in the visible region, which

decreases with the rise in photon energy. Furthermore, K2SeCl6 exhibits a negative

ε1(0) at an energy of 5 eV, suggesting high reflectivity at that energy, as evident in

Figure 5.8 (a). For 5 GPa applied pressure, K2SeCl6 maintains a negative ε1(0), but

with further increases in pressure, ε1(0) consistently becomes positive. At 80 GPa,

the first peak shifts towards the infrared region. The second peak’s value exhibits

a gradual increase with induced pressure, and the magnitude of ε2(0) is closely as-

sociated with the material’s band structure and density of states. For K2SeCl6, the

threshold is at 2.502 eV, as seen in the ε2(ω) curve, which aligns with the electronic

band gap extracted from the band structure. The first peak for 0 GPa occurs in

the early ultraviolet region. With applied pressure, the value of ε2(ω) gradually
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decreases, and the first peak shifts towards the ultraviolet region. Comparing to 0

GPa, the first peak of ε2(ω) for 80 GPa is significantly smaller. However, in the

range between 8 to 10 eV, ε2(ω) increases gradually with applied pressure. For 80

GPa, ε2(ω) reaches its maximum in this region.
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Figure 5.6: The computed a) Real dielectric function and b) Imaginary dielectric function

of vacancy-ordered double perovskite K2SeCl6 under all applied pressure.

Beyond 10 eV, ε2(ω) decreases with increased photon energy. This behavior aligns
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with the absorption coefficient plot for the compound in Figure 5.7 (a). A mate-

rial’s ability to absorb electromagnetic waves provides crucial information about its

efficiency in converting solar energy when exposed to sunlight.
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Figure 5.7: Computed a) Absorption coefficient and b) Optical conductivity of vacancy-

ordered double perovskite K2SeCl6 under all applied pressure compared to 0 GPa.

The attenuation of light with a specific energy into a material is determined by the

optical absorption coefficient α of a material [123]. Under ambient pressure, the
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extracted absorption edge at 2.502 eV aligns with the electronic band gap. Beyond

the threshold, as photon energy increases, α(ω) reaches its first peak at 3.5 eV and

the second peak at 4.5 eV. After 5 eV, the absorption coefficient starts decreasing

with further increase in photon energy, revealing the semiconducting nature of the

computed material.
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Figure 5.8: Calculated pressure induced a) Optical reflectivity and b) Refractive index

of K2SeCl6 with ambient condition.
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Under applied pressure at early UV region, value of α decreases and after 8 eV ab-

sorption increases as the photon energy increases. There is a substantial increase in

absorption between the 10-12 eV region compared to 0 GPa. The electrical conduc-

tivity σ(ω) reflects the optical current induced by liberated free carriers resulting

from incident energy. The incident photon energy excites bound valence electrons,

causing them to move to the conduction band. The behavior of the absorption coef-

ficient in Figure 5.7 (a) and optical conductivity in Figure 5.7 (b) aligns because the

attenuation of incident light increases the electron concentration in the conduction

band. The peaks of σ become sharper with the application of hydrostatic pressure

in the UV region (at 9 eV), similar to α. This is due to the optical absorption of

the studied perovskite under uniform pressure increasing between 8 to 10 eV. This

result is also supported by the pressure-induced change in the band structure. Re-

flectivity is a crucial optical feature for materials in photovoltaic applications. For

0 GPa, reflectivity starts increasing after the threshold. The first peak occurs at

the boundary of the visible spectrum and makes a sharp peak at 5 eV, where reflec-

tivity is 50% of the incident electromagnetic wave. Under applied pressure, there

is no significant change in reflectivity compared to 0 GPa. In the visible region,

the maximum reflectivity is less than 30% for all applied pressures. Such a small

value of R doesn’t significantly impact the performance of any optical device. The

refractive index n(ω) is used to determine the amount of light bent or refracted as

it enters a substance. n(ω), sensitive to the wavelength, group velocity, and nature

of the material, is also calculated and plotted against the photon energy in Figure

5.8 (b). Under all applied pressures compared to 0 GPa, n(ω) increases when light

energy enters the UV region, and for 80 GPa, it becomes maximum (2.7). There is

a significant influence of applied pressure on the refractive index over 0 GPa.

In summary, the calculated optical properties under applied pressure, compared to

ambient conditions, indicate an enhanced optical usability of K2SeCl6 as an opto-

electronic device.
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5.4 Thermoelectric properties

Changes in pressure can indeed influence the thermoelectric properties of a material.

The impact is material-specific, and the outcome can either enhance or diminish the

material’s thermoelectric performance. Increased pressure can affect electrical con-

ductivity in diverse ways, depending on the material. It may enhance conductivity

in some cases by reducing lattice defects and improving charge carrier mobility. Con-

versely, it might have the opposite effect by narrowing the bandgap or altering the

electronic structure. For many materials, heightened pressure tends to decrease ther-

mal conductivity by reducing phonon scattering. This reduction is advantageous for

thermoelectric materials since lower thermal conductivity translates to better ther-

moelectric efficiency. The pressure-induced thermoelectric characteristics of K2SeCl6

are investigated by computing electrical conductivity (σ/τ), Seebeck coefficient (S),

thermal conductivity (κe/τ), power factor (PF = σS2/τ), and figure of merit (ZT =

σS2/κτ). Here, τ represents the relaxation time, typically with a constant value on

the order of 10−14s for a semiconductor. The computed electrical conductivity per

relaxation time (σ/τ) for K2SeCl6 under ambient and applied pressure conditions

is illustrated in Figure 5.9 (a) over a temperature range from 100K to 1000K. The

figure indicates that under ambient pressure, the electrical conductivity increases

linearly with temperature, suggesting a rise in carrier concentration associated with

electrical conduction. The continuous increase in electrical conductivity signifies a

steadily growing carrier concentration, indicating a negative temperature coefficient

of resistivity, which supports the semiconductor nature of the examined compound.

At 100K, K2SeCl6 exhibits a minimum value of σ/τ , indicating suppressed charge

carrier mobility, likely associated with its wide band gap. With applied pressure,

the value of σ/τ continuously increases with temperature. At 80 GPa, σ/τ reaches

its maximum, suggesting that with increasing pressure, more electrons get excited

and contribute to the rise in carrier concentration. The thermal conductivity κe/τ

in Figure 5.9 (b) for ambient pressure follows a similar pattern as σ/τ , resulting

from the increase in temperature that enhances the kinetic energy of the carriers.

For any thermoelectric material, achieving an optimized balance between electronic

and thermal conductivities is crucial for higher thermoelectric efficiency.
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Figure 5.9: Calculated a) Electrical conductivity (σ/τ) and b) Thermal conductivity

(ke/τ) of K2SeCl6 under pressure as a function of temperature (T) compared to the am-

bient condition.

Under ambient pressure, κe/τ improves from 0 to 6×1014 W/mKs at 1000K. Fol-

lowing the same trend under all applied pressures, κe/σ continuously increases with

temperature. The Seebeck coefficient quantifies how much voltage will be produced

when there is a temperature difference between the two ends of a material. In sim-

pler terms, it reflects a material’s ability to convert heat energy into electric voltage.
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From Figure 5.10 (a), at ambient pressure, the Seebeck coefficient decreases from

305 µV/K to 190 µV/K at 1000K temperature. The increase in σ/τ corresponds

to a decrease in the potential barrier, which can potentially diminish the conversion

efficiency.
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Figure 5.10: Pressure induced thermoelectric properties: a) Seebeck coefficient and b)

Power factor (PF) of K2SeCl6 as a function of temperature (T) compared to the ambient

condition.
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Table 5.3: The depicted values of Electrical conductivity (σ/τ), Thermal conductivity

(κe/τ), Seeback coefficient (S), Power factor (PF), and Figure of Merit (ZT) of K2SeCl6
for different pressures at 300K temperature.

Pressure σ/τ ke/τ S PF ZT

(GPa) (×1019Ωms) (×1014W/mK) (µV)/K (×1011 W/mK2s)

0 0.39 0.69 214 1.80 0.784

5 0.46 0.83 215 2.16 0.780

10 0.52 0.92 215 2.38 0.775

20 0.55 1.02 218 2.64 0.777

40 0.63 1.15 218 2.97 0.770

60 0.63 1.21 224 3.14 0.781

80 0.61 1.23 229 3.22 0.786
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Figure 5.11: Pressure induced Figure of merit (ZT) for K2SeCl6 as a function of tem-

perature (T) compared to the ambient condition.

Seebeck coefficient values exceeding 200 µV/K are considered indicative of excellent

thermoelectric materials [109]. Notably, our calculations reveal a Seebeck coefficient

of 214 µV/K at room temperature for K2SeCl6 under ambient pressure, which is

remarkably outstanding to the mentioned value. Additionally, under all applied

pressures, the Seebeck coefficient gradually increases compared to 0 GPa, as shown
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in Table 5.3. Therefore, the studied double perovskite material exhibits excellence

for thermoelectric applications under various conditions. The power factor, a di-

mensionless parameter characterizing the efficiency of a material in converting heat

into electrical energy, is a crucial metric for assessing thermoelectric performance.

A high power factor is desirable for efficient thermoelectric materials. In our sys-

tem, the power factor (PF = σS2/τ) demonstrates an increase from 0.6 to 4.2×1011

W/mK2s under ambient pressure at 1000K temperature, as illustrated in Figure 5.10

(b). This trend continues with a gradual increase as pressure is applied. For a more

precise assessment of thermal-to-electrical energy conversion, the figure of merit (ZT

= σS2/κτ) is determined and plotted in Figure 5.11 for temperature ranges from 100

to 1000K. Under ambient pressure and at 100K temperature, ZT is 0.87 for K2SeCl6

and decreases with temperature, exhibiting 0.784 at 300K. As temperature further

increases, ZT continues to decrease. With induced pressure, there are no significant

changes in ZT values. The value decreases for 5, 20, and 40 GPa and reaches almost

the same value for 80 GPa compared to 0 GPa.

In summary, subjecting K2SeCl6 to pressure increases its electrical and thermal

conductivity, resulting in more free electrons in the conduction band and ensuring

higher thermoelectric performance as a practical device.
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Chapter 6

Conclusions

In this thesis, the physical properties of vacancy-ordered double perovskite K2SeCl6

were studied based on Full Potential Linear Augmented Plane Wave (FP-LAPW)

method using Density Functional Theory (DFT) as implemented in WIEN2k code.

We explored the structural, mechanical, electrical, optical, and thermoelectric prop-

erties of vacancy-ordered double perovskite K2SeCl6 for upto 80 GPa induced pres-

sure compared to ambient condition.

The electronic bandstructure of K2SeCl6 revealed a p-type semiconducting nature

with an indirect band gap of 2.502 eV that decreases to 1.568 eV at 80 GPa induced

pressure. The top of the valence bands primarily originated from Cl 3p, while both

Cl 3p and Se 4p contribute to the bottom of the conduction band for all pressurized

conditions. With increasing pressure, Se 4p and Cl 3p orbitals shift from the valence

region to the conduction region, contributing to a reduction in the band gap. The

compound’s stability and ductility under pressurized conditions are assured by its

mechanical properties. The reduction in bond length and volume, combined with

Pugh’s and Poisson’s ratios, ensure excellent stability for the compound under all

pressurized conditions. Optical parameters, including dielectric constants, absorp-

tion coefficients, and optical conductivity, reveal improved optoelectronic properties

in the visible and ultraviolet region under all induced pressures compared to the
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ambient condition. Thermoelectric properties has been investigated using electri-

cal conductivity, thermal conductivity, seebeck coefficient, power factor, and figure

of merit. At ambient pressure, the figure of merit for K2SeCl6 is calculated to be

0.78, and it decreases as the temperature increases. When pressure is applied to

the structure, there are no significant changes in the ZT values. However, in the

high-temperature region, as the pressure increases, the value of ZT increases and

reaches its maximum at 80 GPa compared to the ambient condition. That ensures

the improved thermoelectric properties of our compound with induced pressure in

the high-temperature region.

In summary, under pressure, the structural, mechanical, electrical, optical, and ther-

moelectronic properties collectively demonstrate an improved carrier concentration,

coupled with good electrical and thermal conductivity, compared to ambient con-

ditions. This suggests that the vacancy-ordered double perovskite K2SeCl6 under

uniform pressure could be an appealing choice for applications in optoelectronics

and thermoelectric power generation.
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