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Abstract

This thesis explores the structural, electronic and optical properties of the double

perovskites compound Ca2GaAsO6 using first-principles calculations. By employing

density functional theory (DFT) within the framework of the generalized gradient

approximation (GGA) and modified Becke Johnson (mBJ), electronic band struc-

ture of Ca2GaAsO6 are investigated. Here, the crystal structure of Ca2GaAsO6 is

examined, with emphasis on the arrangement and coordination of the constituent

atoms. The electronic properties of Ca2GaAsO6 are studied to gain insights into

its potential for electronic applications. The density of states (DOS) is calculated,

providing information on the energy bandgap. The dielectric function, optical ab-

sorption coefficient, optical reflectivity, optical conductivity and refractive index are

calculated, allowing for the evaluation of the compound’s response to light across

a wide range of energies. The results obtained from these first-principles calcula-

tions provide valuable insights into the structural stability, electronic band structure

and optical properties of Ca2GaAsO6. The findings contribute to the fundamental

understanding of double perovskites materials and provide a basis for potential ap-

plications in optoelectronics, photonics and energy related technologies.
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Chapter 1

Introduction

The need for energy has significantly increased in recent years, which has acceler-

ated efforts to identify non-fossil fuel and non-conventional energy sources [1]. In the

past decade, due to the variety of applications of double perovskites oxides, espe-

cially their great use in energy production devices, they have attracted great interest

from both theoretical and experimental points of view. Over recent years, double

perovskites (DP) materials have attracted much attention due to their promising ap-

plications in different fields, such as light-emitting diodes (LEDs), lasers, radiation

detectors and solar cells. Among different types of double perovskites, lead-based

DP materials exhibit exceptional applications in photovoltaic technologies which are

due to their suitable direct band gap, high absorption properties, and charge carri-

ers’ effective masses. [2–4]

To understand technological applications, such as solar panel manufacturing, pho-

tonic sensors, thermoelectric generators, luminescence, etc., it is compulsory to eval-

uate the performance of materials and their native properties [5]. The efficiency of

oxide perovskites solar cells raised form 3.8 percent in 2009 to 26.08 percent in

2022 [6]. This is the best efficiency enhancement trend in the history of photo-

voltaics. Despite of remarkably high efficiency and low cost these champions have

few disadvantages. The main problems with these organic-inorganic perovskites so-
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lar cells are use of lead in their fabrication and stability issues. Lead is a toxic

element and could be harmful for the human body and environment [7–9]. Lead can

easily be dissolved and oxidize with the water molecules. Therefore, the installation

of these solar cells with lead element in their fabrication could lead a serious threat

to the environment and the existence of human population.

The double perovskitess fundamental structure is A2BB′O6 [10]. Here A is an

alkaline-earth or rare-earth ion. The transition-metal sites (perovskites B-sites)

are occupied alternately by different cations B and B′ . Intervening oxygen bridges

every B and B′ atom pair, thus forming alternating BO6 and B′O6 octahedra. This

type of compound most of the time forms perfectly cubic structures with the space

group no 225(Fm3̄m ).

Double perovskitess are multipurpose materials. They have a wide range of sustain-

able and renewable applications because of their surprising stability and electronic

structure. The distinctive features, such as hole and electron transport, high mobil-

ity and long diffusion lengths of the charge carrier, tunable bandgaps and stimulus-

based variation in the properties, are the fundamentals of the notable performance

of halide double perovskitess [11].

Research on double perovskites oxides has been extensive and has covered a wide

range of topics. Here are a few areas where research has been conducted:

Magnetism and Spintronics: Double perovskites oxides have attracted significant

attention for their magnetic properties and their potential applications in spintron-

ics. For example, researchers have studied materials like Sr2FeMoO6, which exhibit

colossal magnetoresistance, a large change in electrical resistance in response to an

applied magnetic field. These materials are being explored for their potential use in

magnetic sensors, magnetic memory devices, and spintronic applications [12–15].

Multiferroics: Multiferroic materials exhibit both ferroelectric and magnetic prop-

erties, which make them promising for applications in devices that can be controlled

by both electric and magnetic fields. Double perovskites oxides have been studied

for their multiferroic behavior, where researchers have investigated the coupling be-

tween the magnetic and ferroelectric properties. Materials such as Bi2FeCrO6 and

Bi2FeMnO6 have been explored for their multiferroic properties [16–19].
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Catalysis: Double perovskites oxides have shown potential as catalysts for various

chemical reactions. Researchers have investigated their use in catalyzing oxygen

reduction reactions (ORR) and oxygen evolution reactions (OER) for energy con-

version and storage applications. Materials like La2NiMnO6 and La2NiCoO6 have

been studied for their catalytic properties [20–23].

Thermoelectrics: Thermoelectric materials can convert waste heat into electricity,

making them attractive for energy harvesting applications. Double perovskites ox-

ides have been studied for their thermoelectric properties. Researchers have explored

materials like Sr2FeMoO6 and Ba2NaOsO6 for their potential use in thermoelectric

devices [24].

Superconductivity: Double perovskites oxides have also been investigated for

their superconducting properties. For example, researchers have studied materi-

als like Sr2RuO4 and Sr2VO3FeAs, which exhibit unconventional superconductivity

at low temperatures. Understanding the superconducting behavior of these mate-

rials can shed light on the mechanisms behind high-temperature superconductiv-

ity [25–29].

These are just a few examples of the research conducted with double perovskites

oxides. The field is broad, and ongoing research continues to explore their unique

properties and potential applications in various fields of science and technology.

However, the unstable structure, high humidity, and environmental pollution of the

lead-based DPs limit their practical applications. Therefore, in recent years, finding

stable and nature-friendly non-toxic DP materials has been considered as a strate-

gically important field of study.

The aim of this thesis is to explore the structural, electronic, and optical properties

of Ca2GaAsO6 using a first-principles approach. By employing DFT calculations,

we will unravel the underlying atomic and electronic structure of Ca2GaAsO6, inves-

tigate its stability, and analyze its electronic band structure. Furthermore, we will

delve into the optical properties of Ca2GaAsO6, such as its absorption and emission

spectra, to gain insights into its potential applications in optoelectronic devices.

To accomplish these objectives, this thesis will be organized as follows. In Chap-

ter 2, we will provide an overview of the theoretical background and methodology.
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Chapter 3 will focus on the a brief introduction to DFT and its application in ma-

terial science.Finally, in Chapter 4, we will investigate the electronic properties of

Ca2GaAsO6, examining its band structure, density of states, and electronic charge

distribution and optical properties of Ca2GaAsO6, highlighting its absorption and

emission characteristics.

By delving into the structural, electronic, and optical properties of Ca2GaAsO6,

this thesis aims to provide valuable insights into the fundamental aspects of this

double perovskites compound. The findings presented here will contribute to the

understanding of its potential applications in advanced electronic and optoelectronic

devices, and pave the way for future experimental investigations and materials de-

sign based on the unique properties of Ca2GaAsO6.
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Chapter 2

Theoretical Background

Theoretical understanding of the electronic structure of chemical compounds and

the processes, thermodynamics, and kinetics of chemical reactions may be achieved

through the application of quantum mechanics. Although there are certain macro-

scopic systems to which it is directly applicable, it may be regarded of broadly as the

study of physics on very small length scales. It describes how matter responds and

interacts with energy on a scale of atoms and subatomic particles. The most fun-

damental forms that are relevant to many-body systems are covered in this chapter

along with fundamental ideas and expressions. The Schrödinger equation, a specific

wave equation, controls how quantum physics particles behave when they exhibit

wavelike features. The Schrödinger equation is unique from the other wave equa-

tions in a few respects. All of our standard methods for resolving a wave equation

and handling the answers remain valid despite these adjustments.

2.1 Schrödinger Equation

Schrödinger equation is basically a differential equation and widely used to solve

problems based on the atomic structure of matter which is one of the most funda-

mental equations of quantum physics. The Schrödinger wave equation defines how
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a particle behaves in a field of force or how a physical parameter changes over time.

The equation is named after Erwin Schrödinger, who postulated the equation in

1925 and published it in 1926, forming the basis for the work that resulted in his

Nobel Prize in Physics in 1933.

Conceptually, the Schrödinger equation is the quantum counterpart of Newton’s

second law in classical mechanics. Given a set of known initial conditions, Newton’s

second law makes a mathematical prediction as to what path a given physical sys-

tem will take over time. The Schrödinger equation gives the evolution over time of

a wave function, the quantum-mechanical characterization of an isolated physical

system.

2.2 Time Dependent Schrödinger Equation

The form of the Schrödinger equation depends on the physical situation. The most

general form is the time-dependent Schrödinger equation, which gives a description

of a system evolving with time.

The time dependent schrödinger equation [30] is represented as

iℏ
∂

∂t
Ψ(r⃗, t) = ĤΨ(r⃗, t) (2.1)

It is often impracticable to use a complete relativistic formulation of the formula;

therefore Schrödinger himself postulated a non-relativistic approximation which is

nowadays often used, especially in quantum chemistry.

For a single particle, the Hamiltonian

Ĥ = T̂ + V̂ = − ℏ2

2m
∇⃗2 + V (r⃗, t) (2.2)

leads to the (non-relativistic) time-dependent single-particle Schrödinger equation
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iℏ
∂

∂t
Ψ(r⃗, t) = [− ℏ2

2m
∇⃗2 + V (r⃗, t)]Ψ(r⃗, t) (2.3)

For N particles in three dimensions, the Hamiltonian is

Ĥ =
N∑
i=1

p̂2i
2mi

+ V (r⃗1, r⃗2, ...., r⃗N , t) = −ℏ2

2

N∑
i=1

1

mi

+ V (r⃗1, r⃗2, ...., r⃗N , t) (2.4)

The corresponding Schrödinger equation reads

iℏ
∂

∂t
ψ(r⃗1, r⃗2, ...., r⃗N , t) = [−ℏ2

2

N∑
i=1

1

mi

∇⃗2
i + V (r⃗1, r⃗2, ...., r⃗N , t)]ψ(r⃗1, r⃗2, ...., r⃗N , t)

(2.5)

The solutions of the time-independent Schrödinger equation are special cases, where

the Hamiltonian itself has no time-dependency (which implies a time independent

potential V (r⃗1, r⃗2, ..., r⃗N) , and the solutions therefore describe standing waves which

are called stationary states or orbitals).

The time-independent equation is obtained by the approach of separation of vari-

ables, i.e. the spatial part of the wave function is separated from the temporal

part [31]

Ψ(r⃗1, r⃗2, ...., r⃗N , t) = ψ(r⃗1, r⃗2, ...., r⃗N , t)τ(t) = ψ(r⃗1, r⃗2, ...., r⃗N , t)e
−iωt (2.6)

Furtheremore, the left hand side of the equation reduces to the energy eigenvalue of

the Hamiltonian multiplied by the wave function, leading to the general eigenvalue

equation

Eψ(r⃗1, r⃗2, ..., r⃗N) = Ĥψ(r⃗1, r⃗2, ..., r⃗N) (2.7)

Again, using the many-body Hamiltonian, the Schrödinger equation becomes

Eψ(r⃗1, r⃗2, ..., r⃗N) = [−ℏ2

2

N∑
i=1

1

mi

∇⃗2
i + V (r⃗1, r⃗2, ...., r⃗N , t)]ψ(r⃗1, r⃗2, ...., r⃗N , t) (2.8)
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2.3 The Wave Function

In quantum physics, a wave function is a mathematical description of the quan-

tum state of an isolated quantum system. The wave function is a complex-valued

probability amplitude, and the probabilities for the possible results of measurements

made on the system can be derived from it. The first and most important postulate

is that the state of a particle is completely described by its (time-dependent) wave

function, i.e. the wave function contains all information about the particle’s state.

For the sake of simplicity the discussion is restricted to the time-independent wave

function. A question always arising with physical quantities is about possible inter-

pretations as well as observations. The Born probability interpretation of the wave

function, which is a major principle of the Copenhagen interpretation of quantum

mechanics, provides a physical interpretation for the square of the wave function as

a probability density [32]

|ψ(r⃗1, r⃗2, r⃗3, .., r⃗N |2dr⃗1dr⃗2....dr⃗N (2.9)

This equation describes the probability that particles 1,2,...,N are located simulta-

neously in the corresponding volume element dr⃗1dr⃗2....dr⃗N [33]. What happens if

the positions of two particles are exchanged, must be considered as well. Following

merely logical reasoning, the overall probability density cannot depend on such an

exchange, i.e.

|ψ(r⃗1, r⃗2, r⃗3, ..., r⃗i, r⃗j, ..., r⃗N |2 = |ψ(r⃗1, r⃗2, r⃗3, ..., r⃗j, r⃗i, ..., r⃗N |2 (2.10)

The wave function’s behavior during a particle exchange has just two possible out-

comes. The first one is a symmetrical wave function, which does not change due to

such an exchange. This corresponds to bosons (particles with integer or zero spin).

The other possibility is an anti-symmetrical wave function, where an exchange of two

particles causes a sign change, which corresponds to fermions (particles which half-

integer spin). In this text only electrons are from interest, which are fermions [34].
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The anti-symmetric fermion wave function leads to the Pauli principle, which states

that no two electrons can occupy the same state, whereas state means the orbital

and spin parts of the wave function [35]. The antisymmetry principle can be seen as

the quantum mechanical formalization of Pauli’s theoretical ideas in the description

of spectra (e.g. alkaline doublets). Another consequence of the probability inter-

pretation is the normalization of the wave function. If equation (2.9) describes the

probability of finding a particle in a volume element,setting the full range of coor-

dinates as volume element must result in a probability of one, i.e. all particles must

be found somewhere in space. This corresponds to the normalization condition for

the wave function.

∫
dr⃗1

∫
dr⃗2...

∫
dr⃗N |ψ(r⃗1, r⃗2, r⃗3, .., r⃗N |2 = 1 (2.11)

Equation (2.11) also gives insight on the requirements a wave function must fulfill

in order to be physical acceptable. Wave functions must be continuous over the

full spatial range and square-integratable [35]. Another very important property of

the wave function is that calculating expectation values of operators with a wave

function provides the expectation value of the corresponding observable for that

wave function. For an observable O(r⃗1, r⃗2, ..., r⃗N) this can generally be written as

< O >=

∫
dr⃗1

∫
dr⃗2...

∫
dr⃗Nψ

∗(r⃗1, r⃗2, .., r⃗N)Ôψ
(r⃗1, r⃗2, .., r⃗N) (2.12)

2.4 Many Body System And Born Oppenheimer Ap-

proximation

The Hamiltonian of a many-body system consisting of nuclei and electrons can be

written as [36]
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Htot = −
∑
I

ℏ2

2MI

∇⃗2
RI

−
∑
i

ℏ2

2Me

∇⃗2
ri
+
1

2

∑
I,J

ZIZJe
2

|RI −RJ |
+
1

2

∑
i,j

e2

|ri − rj|
−
∑
I,i

ZIe
2

|RI − ri|

(2.13)

where the indexes I, J run on electrons, RI and MI are positions and masses of the

nuclei, ri and Me of the electrons, ZI the atomic number of number of nucleus I. The

first term is the kinetic energy of the nuclei, the second term is the kinetic energy

of the electron, the third term is the potential energy of nucleus-nucleus Coulomb

interaction, the fourth term is the potential energy of electron-electron Coulomb

interaction and the last term is the potential energy of nucleus-electron Coulomb

interaction [37]. The time-independent Schrödinger equation for the system :

HtotΨ = ({RI}, {ri}) = Eψ({RI}, {ri}) (2.14)

where ψ({RI}, {ri}) is the total wavefunction of the system. Everything about the

system is known if one can solve the above Schrödinger equation. However, it is im-

possible to solve it in practice. A so-called Born-Oppenheimer (BO) approximation

was made by Born and Oppenheimer [38] in 1927. Since the nuclei are much heavier

than electrons, the nuclei move much slower than the electrons. Therefore we can

separate the movement of nuclei and electrons. When we consider the movement of

electrons, it is responsible to consider the positions of nuclei are fixed, thus the total

wavefunction can be written as:

ψ({RI}, {ri}) = Θ({RI})ϕ({ri}; {Ri}) (2.15)

where Θ{RI} describes the nuclei and ϕ({ri}; {Ri}) the electrons. With the BO
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approximation, Eq. can be divided into two separate Schrödinger equations:

Heϕ({ri}; {Ri}) = V ({RI})ϕ({ri}; {Ri}) (2.16)

where

He = −
∑
I

ℏ2

2Me

∇⃗2
ri
+

1

2

∑
I,J

ZIZJe
2

|RI −RJ |
+

1

2

∑
i,j

e2

|ri − rj|
−
∑
I,i

ZIe
2

|RI − ri|
(2.17)

and

[−
∑
I

ℏ2

2MI

∇⃗2
RI

+ V ({RI})]Θ({RI}) = ÉΘ({Ri) (2.18)

Eq.(16) is the equation for the electronic problem with the nuclei positions fixed.

The eigenvalue of the energy V (RI ) depends on the positions of the nuclei. After

solving Eq. (22), V (RI) is known and by applying it to Eq. (18), which has no

electronic degrees of freedom, the motion of the nuclei is to obtained.

The significance of the BO approximation is to separate the movement of electrons

and nuclei. The electrons are moving in a static external potential Vext(r) formed by

the nuclei, which is the starting point of DFT. The BO approximation was extended

by Bohn and Huang known as Born-Huang (BH) approximation [39] to take into

account more nonadiabatic effect in the electronic Hamiltonian than in the BO

approximation.
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2.5 The Hartee Fork Approach

The Hartree–Fock (HF) method is a method of approximation for the determination

of the wave function and the energy of a quantum many-body system in a stationary

state.

The Hartree–Fock method often assumes that the exact N-body wave function of

the system can be approximated by a single Slater determinant (in the case where

the particles are fermions) or by a single permanent (in the case of bosons) of

N spin-orbitals. By invoking the variational method, one can derive a set of N-

coupled equations for the N spin orbitals. A solution of these equations yields

the Hartree–Fock wave function and energy of the system. Especially in the older

literature, the Hartree–Fock method is also called the self-consistent field method

(SCF). In deriving what is now called the Hartree equation as an approximate solu-

tion of the Schrödinger equation, Hartree required the final field as computed from

the charge distribution to be "self-consistent" with the assumed initial field. Thus,

self-consistency was a requirement of the solution. The solutions to the non-linear

Hartree–Fock equations also behave as if each particle is subjected to the mean field

created by all other particles (see the Fock operator below), and hence the termi-

nology continued.

In order to find a suitable strategy to approximate the analytically not accessible

solutions of many-body problems, a very useful tool is variational calculus, similar

to the least-action principle of classical mechanics. By the use of variational calcu-

lus, the ground state wave function ψ0 , which corresponds to the lowest energy of

the system E0, can be approached. Hence, for now only the electronic Schrödinger

equation is of interest, therefore in the following sections we set H̄ ≡ H̄el, E ≡ Ēel,

and so on. Observables in quantum mechanics are calculated as the expectation val-

ues of operators. The energy as observable corresponds to the Hamil- ton operator,

therefore the energy corresponding to a general Hamiltonian can be calculated as

E =
〈
H̄
〉
=

∫
dr⃗1

∫
dr⃗2...

∫
dr⃗Nψ

∗(r⃗1, r⃗2, .., r⃗N)Ĥψ
(r⃗1, r⃗2, .., r⃗N) (2.19)
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The Hatree-Fock techique is based on the principle that the energy obtained by any

(normalized) trial wave function other than the actual ground state wave function

is always an upper bound, i.e. higher than the actual ground state energy. If the

trial function happens to be the desired ground state wave function, the energies are

equal

Etrial ≥ E0 (2.20)

with

Etrial =

∫
dr⃗1

∫
dr⃗2...

∫
dr⃗Nψ

∗
trial(r⃗1, r⃗2, .., r⃗N)Ĥψtrial(r⃗1, r⃗2, .., r⃗N) (2.21)

and

E0 =

∫
dr⃗1

∫
dr⃗2...

∫
dr⃗Nψ

∗
0(r⃗1, r⃗2, .., r⃗N)Ĥψ0(r⃗1, r⃗2, .., r⃗N) (2.22)

The expressions above are usually inconvenient to handle. For the sake of a compact

notation, in the following the bra-ket notation of Dirac is introduced [40]. In this

notation, equations 20 to 22 are expressed as

〈
ψtrial|Ĥ|ψtrial

〉
= Etrial ≥ E0 =

〈
ψ0|Ĥ|ψ0

〉
(2.23)

Proof: The eigenfunctions ψ of the Hamiltonian H̄ (each corresponding to an

energy eigenvalue Ei) form a complete basis set, therefore any normalized trial wave

function ψ trial can be expressed as linear combination of those eigenfunctions

ψtrial =
∑
i

λiψi (2.24)

The assumption is made that the eigenfunctions are orthogonal and normalized.

Hence it is requested that the trial wave function is normalized, it follows that

〈
ψtrial|ψtrial

〉
= 1 =

〈∑
i

λiψi|
∑
j

λjψj
〉
=

∑
i

∑
j

λ∗iλj
〈
ψi|ψj

〉
=

∑
j

|λj|2 (2.25)
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On the other hand,

Etrail =
〈
ψtrail|Ĥ|ψtrail

〉
=

〈∑
i

λiψi|Ĥ|
∑
j

λjψj
〉
=

∑
j

Ej|λj|2 (2.26)

Together with the fact that the ground state energy E0 is per definition the lowest

possible energy, and therefore has the smallest eigenvalue (E0 ≤ Ei), it is found that

Etrail =
∑
j

Ej|λj|2 ≥ Ej
∑
j

|λj|2 (2.27)

what resembles equation 23. Equations (19) to (27) also include that a search for

the minimal energy value while applied on all allowed N-electron wave-functions

will always provide the ground-state wave function (or wave functions, in case of a

degenerate ground state where more than one wave function provides the minimum

energy). The mathematical framework used above, i.e.rules which assign numerical

values to functions, so called functionals, is also one of the main concepts in density

functional theory. A function gets a numerical input and generates a numerical

output whereas a functional gets a function as input and generates a numerical

output. Expressed in terms of functional calculus, where ψ −→N addresses all allowed

N-electron wave functions, this means [41]

E0 = min
ψ→N

E
〈
ψ
〉
= min

ψ→N

〈
ψ|Ĥ|ψ

〉
= min

ψ→N

〈
ψ|T̂ + V̂ + Û |ψ

〉
(2.28)

Due to the vast number of alternative wave functions on the one hand and process-

ing power and time constraints on the other, this search is essentially unfeasible for

N-electron systems. Restriction of the search to a smaller subset of potential wave

functions, as in the Hartree- Fock approximation, is conceivable.

14
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2.6 Limitations and Failings of the Hartree-Fock Ap-

proach

The number of electrons in atoms and molecules can be even or odd. When there

are even numbers of electrons and they are all positioned in double-occupied spatial

orbitals ψi, the compound is said to be in a single state.Such systems are called

closed-shell systems. Both substances with one occupied orbital, or species with a

triplet or higher ground state, and substances with an odd number of electrons are

referred to be open-shell systems. These two categories of systems relate to two

different Hartree-Fock technique methods. All electrons are assumed to be coupled

in orbitals when using the restricted HF technique (RHF), however this restriction

is completely eliminated when using the unconstrained HF method (UHF). It is

also possible to describe open-shell systems with a RHF approach where only the

single occupied orbitals are excluded which is then called a restricted open-shell HF

(ROHF) which is an approach closer to reality but also more complex and therefore

less popular than UHF [42]. The size of the investigated system can also be a limiting

factor for calculations. Kohn states a number of M = p5 with 3p10 parameters for

a result with sufficient accuracy in the investigation of the H2 system [43].

For a system with N = 100 (active) electrons the number of parameters rises to

M = p3N = 3300to10300 ≈ 10150to10300 (2.29)

The energy determined by HF calculations is usually greater than the precise ground

state energy because a multi electron wave function cannot be completely repre-

sented by a single Slater determinant. The Hartree-Fock limit is the energy that

can be measured with the greatest accuracy using HF techniques. The energy de-

termined by HF calculations is usually greater than the precise ground state energy

because a multi electron wave function cannot be completely represented by a single

Slater determinant. The Hartree-Fock limit is the energy that can be measured with

the greatest accuracy using HF methods. The difference between EHF and Eexact is
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called correlation energy and can be denoted as [44]

EHF
corr = Emin − EHF (2.30)

Despite the fact that Ecorr is usually small against Emin , as in the example of a N2

molecule where

EHF
corr = 14.9eV < 0.001Emin

(2.31)

it can have a huge influence [45].

For instance, the experimental dissociation energy of the N2 molecule is

Ediss = 9.9eV < Ecorr

(2.32)

which corresponds to a large contribution of the correlation energy to relative ener-

gies such as reaction energies which are of particular interest in quantum chemistry.

The main contribution to the correlation energy arises from the mean field approxi-

mation used in the HF-method. That means one electron moves in the average field

of the other ones, an approach which completely neglects the intrinsic correlation of

the electron movements. To get a better understanding what that means, one may

picture the repulsion of electrons at small distances which clearly cannot be covered

by a mean-field approach like the Hartree-Fock-method [46].
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2.7 Slater Determination

A Slater determinant is an expression that describes the wave function of a multi-

fermionic system. It satisfies anti-symmetry requirements, and consequently the

Pauli principle, by changing sign upon exchange of two electrons (or other fermions).

Only a small fraction of all potential fermionic wave functions can be expressed as

a single slater determinant, but because of their simplicity, they are an important

and useful subset. In the Hartree-Fock approach, the search is restricted to ap-

proximations of the N-electron wave function by an antisymmetric product of N

(normalized) one electron wave-functions, the so called spin- orbitals χi(x⃗i) A wave

function of this type is called Slater-determinant, and reads [47]

Ψ0 ≈ ϕSD = (N !)−1/2

∣∣∣∣∣∣∣∣∣∣∣∣

X1(x⃗1) X2(x⃗1) ... XN(x⃗1)

X1(x⃗2) X2(x⃗2) .... XN(x⃗2)
...

...
...

...

X1(x⃗N) X2(x⃗N) .... XN(x⃗N)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.33)

It is important to notice that the spin-orbitals χi(x⃗i) are not only depending on

spatial co- ordinates but also on a spin coordinate which is introduced by a spin

function, x⃗i = r⃗i, s A detailed discussions of the spin orbitals and their (necessary)

properties are omitted in this text, a detailed treatise is provided in the books by

Szabo and Holthausen [48]. As spin or- bitals e.g. hydrogen-type orbitals (for atomic

calculations) and linear combinations of them are used.

Returning to the variational principle and equation (2.33), the ground state energy

approximated by a single slater determinant becomes

E0 = min
ϕSD→N

E
〈
ϕSD

〉
= min

ϕSD→N

〈
ϕSD|Ĥ|ϕSD

〉
= min

ϕSD→N

〈
ϕSD|T̂ + V̂ + Û |ϕSD

〉
(2.34)

A general expression for the Hartree-Fock Energy is obtained by usage of the Slater

determinant as a trial function.
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EHF =
〈
ϕSD|Ĥ|ϕSD

〉
=

〈
ϕSD|T̂ + V̂ + Û |ϕSD

〉
(2.35)

For the sake of brevity, a detailed derivation of the final expression for the Hartree-

Fock energy is omitted. It is a straightforward calculation found for example in the

Book by Schwabl [49]. The final expression for the Hartree- Fock energy contains

three major parts

EHF =
〈
ϕSD|Ĥ|ϕSD

〉
=

N∑
i

(i|ĥ|i) + 1

2

N∑
i

N∑
j

[(ii|jj)− (ij|ji)] (2.36)

with

(i|ĥi|i) =
∫
X∗
i (x⃗i)[−

1

2
∇⃗2
i −

M∑
k=1

Zk
rik

]Xi(x⃗i)dx⃗i (2.37)

(ii|jj) =
∫ ∫

|Xi(x⃗i)|2
1

rIJ
|Xj(x⃗j)|2dx⃗idx⃗j (2.38)

(ii|jj) =
∫ ∫

|Xi(x⃗i)X
∗
j (x⃗j)

1

rij
Xj(x⃗j)X

∗
i (x⃗i)dx⃗idx⃗j (2.39)

The first term corresponds to the kinetic energy and the nucleus-electron inter-

actions, ĥ denoting the single particle contribution of the Hamiltonian, whereas

the latter two terms correspond to electron-electron interactions. They are called

Coulomb and exchange integral, respectively. Examination of equations (2.36) to

(2.39) furthermore reveals, that the Hartree-Fock energy can be expressed as a func-

tional of the spin orbitals EHF = E[χi ] Thus,variation of the spin orbitals leads to

the minimum energy. An important point is that the spin orbitals remain orthonor-

mal during minimization. This restriction is accomplished by the introduction of

Lagrangian multipliers λi the resulting equations, which represent the Hartree-Fock

equations. For a detailed derivation, the reader is referred to the book by Szabo

and Ostlund .

Finally, one arrives at

f̂iXi = λiXi i = 1, 2, ...., N (2.40)
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with

f̂i = −1

2
∇⃗2
i −

M∑
k=1

Zk
rij

+
N∑
i

[ ⃗Jj(x⃗i − ⃗Kj(x⃗i] = ĥi + ⃗V HF (ı) (2.41)

The Fock operator for the ı → th electron.In similarity to (2.36) to (2.39), the

first two terms represent the kinetic and potential energy due to nucleus-electron

interaction, collected in the core Hamiltonian h⃗i operators,whereas the latter terms

are sums over the Coulomb operator J⃗j and the exchange operators K⃗j with the

other j electrons, which form the Hartree-Fock potential ⃗V HF .

The two electron repulsion operator from the original Hamiltonian is exchanged by

a one-electron operator ⃗V HF which describes the repulsion in average.

2.8 Electron Density

Electron density or electronic density is the measure of the probability of an electron

being present at an infinitesimal element of space surrounding any given point.

The electron density (for N electrons) as the basic variable of density functional

theory is defined as [50]

n(r⃗) = N
∑
s1

∫
dr⃗2...

∫
dx⃗Nψ

∗(r⃗1, x⃗2, ..., x⃗N)ψ(r⃗1, x⃗2, ..., x⃗N) (2.42)

If additionally the spin coordinates are neglected, the electron density can even be

expressed as measurable observable only dependent on spatial coordinates [51]

n(r⃗) = N

∫
dr⃗2...

∫
dr⃗Nψ

∗(r⃗1, x⃗2, ..., x⃗N)ψ(r⃗1, x⃗2, ..., x⃗N) (2.43)

which can e.g. be measured by X-ray diffraction. Before presenting an approach

using the electron density as variable, it has to be ensured that it truly contains

all necessary informations about the system. In detail that means it has to contain

information about the electron number N as well as the external potential charac-

terized by V⃗ . The total number of electrons can be obtained by integration the
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electron density over the spatial variables

N =

∫
dr⃗n(r⃗) (2.44)

2.9 Thomas-Fermi-Dirac Approximation

In 1927, the predecessor to DFT was the Thomas-Fermi (TF) model proposed by

Thomas [52] and Fermi [53]. They used the electron density n(r) as the basic

variable instead of the wavefunction. The total energy of a system in an external

potential Vext(r) is written as a functional of the electron density Vext(r) as:

ETF [n(r)] = A1

∫
n(r)

5
3dr +

∫
n(r)Vext(r)dr +

1

2

∫ ∫
n(r)n(ŕ)

|r − ŕ|
drdŕ (2.45)

where the first term is the kinetic energy of the non-interacting electrons in a ho-

mogeneous electron gas (HEG) with A1 = 3
10
(3π2)

2
3 in atomic units. The kinetic

energy density of a HEG is obtained by adding up all of the free electron energy

state ϵk = k2

2
up to the Fermi wavevector kF = [3π2n(r)]

1
3 as:

t0[n(r)] =
2

(2π)3

∫ kF

0

k2

2
4πk2dk = A1n(r)

5
3 (2.46)

The second term is the classical electrostatic energy of the nucleus-electron Coulomb

interaction. The third term is the classical electrostatic Hartree energy approxi-

mated by the classical Coulomb repulsion between electrons. In the original TF

method, the exchange and correlation among electron was neglected. In 1930,

Dirac [54] extended the Thomas-Fermi method by adding a local exchange term

A2

∫
n(r)

5
3dr to eq. (2.41) with A2 = −3

4
( 3
π
)
1
3 which leads eq. (2.41) to

ETFD[n(r] = A1

∫
n(r)

5
3dr+

∫
n(r)Vext(r)dr+

1

2

∫ ∫
n(r)n ´(r)

|r − r′|
drdŕ+A2

∫
n(r)

4
3dr

(2.47)
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The ground state density and energy can be obtained by minimizing the Thomas-

Fermi-Dirac equation (2.47) subject to conservation of the total number (N ) of

electrons. By using the technique of Lagrange multipliers, the solution can be found

in the stationary condition

δ{ETFD[n(r)]− µ(

∫
n(r)dr −N)} = 0 (2.48)

where µ is a constant known as a Lagrange multipliers, whose physical meaning

is the chemical potential (or Fermi energy at T = 0 K). Eq. (2.47) leads to the

Thomas-Fermi-Dirac equation.

5

4
A1n(r)

2
3 + Vext(r) +

∫
n(r)

|r − r′|
dr =

4

3
A2n(r)

1
3 − µ = 0 (2.49)

which can be solved directly to obtain the ground state density.
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Chapter 3

Density Functional Theory (DFT)

Density Functional Theory (DFT) is a computational quantum mechanical mod-

elling method used in physics, chemistry and materials science to investigate the

electronic structure (or nuclear structure) (principally the ground state) of many-

body systems, in particular atoms, molecules, and the condensed phases. Using this

theory, the properties of a many-electron system can be determined by using func-

tionals, i.e. functions of another function. In the case of DFT, these are functionals

of the spatially dependent electron density. DFT is among the most popular and

versatile methods available in condensed-matter physics, computational physics, and

computational chemistry.

The electronic structure or nuclear structure, primarily the ground state of many-

body systems, such as atoms and molecules, is investigated using density functional

theory, a computational quantum mechanical modelling approach. It is utilized in

a variety of scientific fields to obtain information about the electronic structure of

several body systems, including atoms and molecules. The theory uses functional

notation to describe the features of a many-electron system. The properties of a

many-electron system can be determined using this theory and functionals.

The Schrödinger equation, which determines the wave-function of quantum mechan-

ical systems, was proposed by Erwin Schrodinger in 1925 [55]. Most commonly we
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deal with non-relativistic time independent Schrödinger equation :

Hψ = Eψ (3.1)

Where H is the Hamiltonian operator, ψ is the eigen-function, and E is the eigen-

value. The hamiltonian contain the information of kinetic and potential energy for

all particles of the system. There are well known example like particle in a box

or simple harmonic oscillator where the Hamiltonian has a simple form and the

Schrödinger equation can be solved exactly. However, system with large number of

molecule is complicated. For example, a Hamiltonian operator for a system consist-

ing of consisting of Ni number of atoms of species i with atomic number Zi and n

species of atoms : [56]

H = −ℏ2

2

∑
i

∇2
R⃗i

Mi

− ℏ2

2

∑
i

∇2
r⃗i

me

− 1

4πϵ0

∑
i,j

e2Zi

|R⃗i − r⃗j|
+

1

8πϵ0

∑
i ̸=j

e2

|r⃗i − r⃗j|

+
1

8πϵ0

∑
i ̸=j

e2ZiZj

|R⃗i − R⃗j|

(3.2)

In this equation Ri and Mi are the position and mass of nuclei i respectively, and

ri and me are position and mass of electron i respectively. The first two terms of

the right hand side describe the kinetic energy of nuclei and electrons. The next

three terms describe the potential energy of the system. This potential energy aris-

ing from the attraction between electron-nucleus, electron-electron, nucleus-nucleus

interaction.The hamiltonian contains kinetic and potential energy information for

all particles in the system. There are well-known examples, such as the particle in a

box or the simple harmonic oscillator, in which the Hamiltonian has a simple form

and the Schrödinger equation may be solved precisely. However, a system with a

huge number of molecules is more difficult to understand. In other word :

1. From the perspective of electron, nuclei position are static.

2. From the perspective of nuclei, electron’s position are update instantaneously.

As a result, the equation (3.1) can be simplified by splitting it into two parts, an

electronic and nuclear part, which can be solved separately. This kind of separation

is known as Born-Oppenheimer approximation. On the Born-Oppenheimer approx-
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imation, the position of the nuclei is fixed but the position of electron is not. As a

result the kinetic energy term for nuclei in equation (3.1) become zero and nuclear

nuclear interaction does not change.

The electronic part of the hamiltonian :

Hele = −ℏ2

2

∑
i

∇2
r⃗i

me

− 1

4πϵ0

∑
i,j

e2Zi

|R⃗i − r⃗j|
+

1

8πϵ0

∑
i ̸=j

e2

|r⃗i − r⃗j|
(3.3)

And it can be seen that the molecular system we are interested in can be described

almost entirely by this electronic Hamiltonian. The solution of the Schrödinger

equation with electronic Hamiltonian is electronic wave function ψele with eigen-

value Eele. The wave-function is a function of position only. However, it is not

trivial to find ψele. Due to the electron-electron interaction, terms in Hele will be

tricky to solve. Because each electron simultaneously experience an electronic re-

pulsion though the presence of every other electron. As a result, scientists needed

to come up with an approximation for wave function that will give physically sound

result.

In developing this approximation, it is worth to remember that the wave-function

itself can not be directly observed. Instead what we can be measured is the probabil-

ity that N electrons at some particular set of position (r⃗1, ...., r⃗N). The probability

is given by :

|ψ(r⃗1, ...., r⃗N)|2 = ψ∗(r⃗1, ...., r⃗N)ψ(r⃗1, ...., r⃗N) (3.4)

ψ(r⃗1, ...., r⃗N) can be approximated as a product of individual wave functions which

is known as "Hatree product". Also we need to remember that all electron are iden-

tical. So we can not level them as electron 1 or electron N, but we can measure the

probability that any order of set of N electrons are in the coordinate r⃗1 to r⃗n. So

the electron density can be calculated like:

n(r⃗) = 2
∑
i

ψ∗
i (r⃗)ψi(r⃗) (3.5)

The factor 2 come because of electron spin. The electron density is a factor of three
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coordinate, but can give a lot of information that is observable from wave-function

which is a function of 3N coordinate.

Walter Kohn with his co-workers developed the "Density functional theory" to find

how to use the electron density for the solution of Schrödinger equation and for his

work, he got novel prize in 1998 [57].

3.1 Hohenberg-Kohn Theorems

In 1964, DFT was proven to be an exact theory of many-body systems by Hohenberg

and Khon. [58] It applies to condensed-matter systems of electrons with fixed nuclei,

and also to any system of interacting particles in an external potential Vext(r⃗). The

theory is based upon two theorems.

The HK Theorem I

The ground state particle density n(r) of a system of interacting particle in an exter-

nal potential Vext(r⃗) uniquely determines the external potential Vext(r⃗), except for

a constant. Thus the ground state particle density determines the full hamiltonian,

except for a constant shift of the energy. In principle, all the states including ground

and excited states of many-body wavefunctions can be calculated. This means that

the ground state particle density uniquely determines all properties of the system

completely.

Proof : For simplicity, consider the case that the ground state of the system is

nondegener- ate. It can be proven that the theorem is valid for systems with degen-

erate ground states [59]. The proof is based on minimum energy principle. Suppose

there are two different external potentials Vext(r⃗) and Vext(r⃗) which differ by more

than a constant and lead to the same ground state density n0(r). The two external

potentials would give two different Hamiltonians, Ĥ and ´̂
H , which have the same

ground state density n0(r) but would have different ground state wavefunctions, Ψ

and Ψ́ , with Ĥ = E0ψ and Ĥ = É0ψ́ . Since ψ́ is not the ground state of Ĥ, it
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follows that

E0 <
〈
Ψ′|Ĥ|Ψ′〉 < 〈

Ψ′|Ĥ ′|Ψ′〉+ 〈
Ψ′|Ĥ − Ĥ ′|Ψ′〉 < E ′

0 +

∫
n0(r)[Vext − V ′

ext(r)]dr

(3.6)

Similarly

E ′
0 <

〈
Ψ|Ĥ|Ψ

〉
<

〈
Ψ|Ĥ|Ψ

〉
+
〈
Ψ|Ĥ− Ĥ|Ψ

〉
< E0+

∫
n0(r)[V

′
ext−Vext(r)]dr (3.7)

Adding eq. (63) and (64) lead to the contradiction

E0 + E ′
0 < E0 + E ′

0 (3.8)

Hence, the ground state density determines the external potential Vext(r⃗), except

for a constant. There is one-to-one mapping between the ground state density n0(r)

and the external potential Vext(r⃗), although the exact formula is unknown.

The HK Theorem II

There exists a universal functional F [n(r)] of the density, independent of the exter-

nal potentialVext(r⃗), such that the global minimum value of the energy functionalE[Ψ′] ≡∫
n(r)Vext(r)dr + F [n(r)] is the exact ground state energy of the system and the

exact ground state density n0(r) minimizes this functional. Thus the exact ground

state energy and density are fully determined by the functional E[Ψ′].

Proof:

The universal functional F [n(r)] can be written as

F [n(r)] ≡ T [n(r)] + Eint[n(r] (3.9)

where T [n(r)] is the kinetic energy and Eint[n(r)] is the interaction energy of the

particles. According to variational principle, for any wavefunction Ψ′ , the energy

functionalE[Ψ′] :

E[Ψ′] ≡
〈
Ψ′|T̂ | ˆVint + ˆVext|Ψ′ (3.10)
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has its global minimum value only when Ψ′ is the ground state wavefunction ψ0

with the constraint that the total number of the particle is conserved. According

to HK theorem I, Ψ′ must correspond to a ground state with particle density n′(r)

and external potential Vext′(r), then E[Ψ′] is a functional of n′(r) . According to

variational principle:

E[Ψ′] ≡
〈
Ψ′|T̂ + ˆVint + ˆVext|Ψ′ = E[n′(r)]

=

∫
n′(r)V ′

ext(r)dr + F [n′(r)]

> E[Ψ0]

=

∫
n0(r)Vext(r)dr + F [n0(r)]

= E[n0(r]

(3.11)

Thus the energy functional E[Ψ′] ≡
∫
n(r)Vext(r)dr + F [n(r)] evaluated for the

correct ground state density n0(r) is indeed lower than the value of this functional

for any other density n(r). Therefore by minimizing the total energy functional of

the system with respect to variations in the density n(r), one would find the exact

ground state density and energy.

3.2 Kohn-Sham Formulation

Kohn and Sham proposed a method to solve equation (8) [60] based on two approx-

imations described as follows [61]: 1. The ground state density is equivalent to the

ground state of collection of non-interacting particles in an auxiliary system.

2. The Hamiltonian for the auxiliary system is constructed with the normal kinetic

energy operator,but the auxiliary potential is treated as an effective local potential.

This approximation best work for densities which are smooth and varying slowly.

The framework by Hohenberg and Kohn is exact, yet not very useful in actual calcu-

lations. The only possibility would be the direct use of the second Hohenberg-Kohn
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theorem for energy minimization, a way that is possible in general but has proven

itself to be impractical [62].

The Hartree-equations are clearly wave-function based and not directly related to

the work of Hohnberg and Kohn, yet they have been proven very useful. Hartree’s

approximation assumes that every electron moves in an effective single-particle po-

tential of the form

υH(r⃗) = − Z

|r⃗|
+

∫
n(r⃗′)

|r⃗ − r⃗′|
dr⃗ (3.12)

The first term is an attractive Coulomb potential of a nucleus with atomic number Z,

whereas the integral term corresponds to the potential caused by the mean electron

density distribution n(r⃗).

The mean density can be denoted in terms of the single particle wave functions

n(r⃗) =
M∑
j=1

|ϕj(r⃗)|2 (3.13)

Since the electron-electron interactions are taken into account in the potential term,

the N-electron and therefore (neglecting the spin coordinates) 3N-dimensional Schrdinger

equation can be approximately replaced by N 3-dimensional single particle equations

for electrons moving in an effective potential defined in (3.13):

[−1

2
∇⃗2 + υH(r⃗)]ψj(r⃗) = ϵjψj(r⃗) (3.14)

Therefore, Kohn and Sham investigated the density functional theory applied to a

system of N non-interacting electrons in an external potential, similar to Hartree’s

approach. The expression for the energy of such a system is of the form

Eυ(r⃗)[n
′(r⃗)] =

∫
υ(r⃗)n′(r⃗)dr⃗ + dr⃗ + TS[n

′(r⃗)] ≥ E (3.15)

where n′(r⃗′) is a υ-representable density for non-interacting electrons and TS[n
′(r⃗)]

the kinetic energy of the ground state of those non-interacting electrons.

Setup of the Euler-Lagrange equation [63] for the non-interacting case with the
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density defined in (3.15) as argument provides

δEυ ≡
∫
δn′(r⃗)[υ(r⃗) +

δ

δn′(r⃗)
TS[n

′(r⃗)]|n′(r⃗)=n(r⃗) − ϵ]dr⃗ = 0 (3.16)

For a system of non-interacting electrons, the total ground state energy and particle

density can therefore simply be denoted as the sums

E =
N∑
j=1

ϵj (3.17)

and

n(r⃗) =
N∑
j=1

|ϕj(r⃗)|2 (3.18)

In addition, Kohn and Sham used the universal functional as an alternative formu-

lation,

F [n′(r⃗)] ≡ TS[n
′(r⃗)] +

1

2

∫
[n′(r⃗)][n′(r⃗′)]

|r⃗ − r⃗′|
dr⃗dr⃗′ + Exc[n

′(r⃗)] (3.19)

In (3.19) TS[n′(r⃗)] is the kinetic energy functional of non-interacting electrons (which

is not even for the same density n(r⃗) the true kinetic energy of the inter- act-

ing system ) and the second term is the so-called Hartree term which describes

the electrostatic self-repulsion of the electron density [64]. The last term is called

exchange-correlation term. It is implicitly defined by (3.19) and can in practice only

be approximated. The quality of the approximation for Exc[n′(r⃗)] is therefore one

of the key issues in DFT.

Construction of the Euler-Lagrange equations for the interacting case in equation

(3.19) provides

δEυ ≡
∫
υn′(r⃗)[υeff (r⃗) +

δ

δn′(r⃗)
TS[n

′(r⃗)]|n′(r⃗)=n(r⃗) − ϵ]dr⃗ = 0 (3.20)

with

υeff (r⃗) ≡ υ(r⃗) +

∫
[n(r⃗)]

|r⃗ − r⃗′|
dr⃗ + υxc(r⃗ (3.21)
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and the functional derivative

υxc(r⃗) ≡
δ

δn′(r⃗)
Exc[n

′(r⃗)]|n′(r⃗)=n(r⃗) (3.22)

whereas the Euler-Lagrange equation resembles (3.19) up to the potential term.

Because of that, the minimizing density can be calculated in a way similar to the

Hartree- approach described in equations (3.20) to (3.23). The corresponding equa-

tions are the single-particle Schrödinger equations

[−1

2
∇⃗2 + υeff (r⃗) = ϵjψj(r⃗)j = 1, 2, ...., N (3.23)

as well as the defining equation for the particle density

n(r⃗) =
M∑
j=1

|ψj(r⃗)|2 (3.24)

which form together with the effective potentialυeff (r⃗) in (3.25) the self-consistent

Kohn-Sham equations.

The accurate ground state energy, as one of the most important quantities, can be

expressed as

E =
∑
j

ϵj + Exc[n(r⃗)]−
∫
υxc(r⃗)n(r⃗)dυ − 1

2

∫
[n′(r⃗)][n′(r⃗′)]

|r⃗ − r⃗′|
dr⃗dr⃗′ (3.25)

Equation (3.25) can be seen as an generalization of the energy expression obtained

with the Hartree-approach (note that the neglect of Exc[n(r⃗)] and υxc(r⃗)n(r⃗) leads

back to equation (3.24)).

3.3 Solving the Kohn-Sham equations

Once we have approximated the exchange-correlation energy, we are in a posi-

tion to solve the Kohn-Sham equations. The Kohn-Sham equations have an it-
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erative solution; they have to be solved self-consistently. To solve the Kohn-Sham

equations for a many body system, we need to define the Hartree potential and

the exchange-correlation potential, and to define the Hartree potential and the

exchange-correlation potential, we need to know the electron density n(r). By us-

ing independent-particle methods, the KS equations provide a way to obtain the

exact density and energy of the ground state of a condensed matter system. The

KS Given that the effective KS potential VKS and the constant KS, equations must

be consistently solved. n(r) and electron density are closely linked terms. This is

usually done numerically through some self-consistent iterations as shown in Figure

3.1.

The process starts with an initial electron density, usually a superposition of atomic

electron density, then the effective KS potential VKS is calculated and the KS equa-

tion is solved with single-particle eigenvalues and wavefunctions, a new electron

density is then calculated from the wavefunctions. After this, self-consistent con-

dition(s) is checked. Self-consistent condition(s) can be the change of total energy

or electron density from the previous iteration or total force acting on atoms is less

than some chosen small quantity, or a combination of these individual conditions.

If the self-consistency is not achieved, the calculated electron density will be mixed

with electron density from previous iterations to get a new electron density. A new

iteration will start with the new electron density. This process continues until self-

consistency is reached. After the self-consistency is reached, various quantities can

be calculated including total energy, forces, stress, eigenvalues, electron density of

states, band structure, etc..

Solving the Kohn-Sham equation with a given Kohn-Sham potential VKS is the

phase that takes up the most time in the entire procedure. When boundary condi-

tions are used, there are numerous different methods for calculating the independent

particle electronic states in solids. They are basically classified into three types :

1. Plane waves: In this method, the wave functions (eigenfunctions of the KS

equations) are expanded in a complete set of plane waves and the external poten-

tial of nuclei are replaced by pseudopotentials which include effects from core elec-
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Figure 3.1: Flowchart of self-consistency loop for solving KS equations

trons. Such pseudopotentials have to satisfy certain conditions. Most widely used

pseudopotentials nowadays include norm conserving pseudopotentials (NCPPs) and

ultrasoft pseudopotentials (USPPs). In norm-conserving pseudopotentials, five re-

quirements should be satisfied:

The pseudo valence eigenvalues should agree with all-electron valence eigenvalues

for the chosen atomic reference configuration. The pseudo valence wavefunctions

should match all- electron valence wavefunctions beyond a chosen core radius Rc.

The logarithmic derivatives of the pseudo and the all-electron wavefunctions should

agree at Rc. The integrated charge inside Rcfor each wavefunction agrees (norm-

conservation) and the first energy derivative of the logarithmic derivatives of the

all-electron and pseudo wavefunctions agree at Rc and therefore for all r ≤ Rc.
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In ultrasoft pseudopotentials, the norm-conservation condition is not required so

that the pseudo wavefunctions are much softer than pseudo wavefunctions in norm

conserving pseudopotentials. As a result, it significantly reduces the number of plane

waves needed to expand the wavefunctions (smaller energy cutoff for wavefunctions).

Plane waves have played an important role in the early orthogonalized plane wave

(OPW) calculations and are generalized to modern projector augmented wave (PAW)

method. Because of the simplicity of plane waves and pseudopotentials, computa-

tional load is significantly reduced in these methods and therefore it is most suitable

for calculations of large systems. In this method, forces can be easily calculated and

it can be easily developed to quantum molecular dynamics simulations as well as re-

sponse to (small) external perturbations. However, results from plane wave methods

using pseudopotentials are usually less accurate than results from all-electron full

potential methods. And great care should be taken when one generates a pseudopo-

tential and it should be tested to match results from all-electron calculations. The

most widely used codes using plane waves and pseudopotentials are plane wave self-

consistent field (now known as Quantum ESPRESSO) (PWscf), ABINIT , VASP

(which uses PAW method too).

2. Localized atomic orbitals: The most well-known methods in this category are

linear combination of atomic orbitals (LCAO), also called tight-binding (TB) and

full potential non-orthogonal local orbital (FPLO). The basic idea of these methods

is to use atomic orbitals as the basis set to expand the one- electron wavefunction

in KS equations.

In FPLO, in addition to the spherical average of the crystal potential, a so-called

confining potential Vcon = (r/r0)
m is used to compress the long range tail of the

local orbitals (wave functions), where m is the confining potential exponent with a

typical value of four, r0 = (x0rNN/2)
3
2 is a compression parameter with x0 being

a dimensionless parameter and rNN the nearest neighbor distance. Therefore, the

atomic-like potential is written as

Vat(r) = −(
1

4π
)

∫
V (r −R− τ)d3r + Vcon(r) (3.26)
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where the first term is the spherical average of the crystal potential mentioned above.

For systems containing atom(s) with partially filled 4f and 5f shells, the confining

potential exponent m needs to be increased to 5 or 6. In practice, the dimensionless

parameter x0 is taken as a variational parameter in the self-consistent procedure.

3. Atomic sphere Methods in the class can be considered as a combination of

plane wave method and localized atomic orbitals. It uses localized atomic orbital

presentation near the nuclei and plane waves in the interstitial region. The most

widely used methods are (full potential) linear muffin-tin orbital (LMTO) as im-

plemented in LMTART by Dr. Savrasov and (full potential) linear augment plane

wave (LAPW) as implemented in WIEN2k.

However, to find the electron density, we must know the single electron wave func-

tions. We do not know these wave functions until we solve the Kohn-Sham equations.

The well-known approach to solve the Kohn-Sham equations is to start with an ini-

tial trial electron density as illustrated in Figure 3.1. Then solve these equations

using the trial electron density. After solving the Kohn-Sham equations, we will

have a set of single electron wave functions. Using these wave functions, we can

calculate the new electron density. The new electron density is an input for the

next cycle. Finally, compare the difference between the calculated electron densities

for consecutive iterations. If the difference in electron density between consecutive

iterations is lower than an appropriately chosen convergence criterion, then the so-

lution of the Kohn-Sham equations is said to be self-consistent. Now the calculated

electron density is considered as the ground state electron density, and it can be

used to calculate the total energy of the system [65].

3.4 Exchange Correlation Functionals/Potentioals

Since the exchange-correlation functional’s real form is unknown, solving the Khon-

Sham equations presents a significant challenge. For the exchange-correlation func-

tional, there are two basic approximation techniques that have been used. The

exchange-correlation functional in DFT computations can be roughly modeled using

the local density approximation (LDA).The second well known class of approxima-
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tions to the Khon-Sham exchange-correlation functional is the generalized gradient

approximation (GGA). In the GGA approximation the exchange and correlation

energies include the local electron density and the local gradient in the electron

density [66].

3.5 mBJ (modified Becke Johnson)

Spin DFT is important in the theory of atoms amd molecules with net spins, as well

as solids with magnetic order. The relevent example for our purpose is the Zeeman

term that is different Fermions with up and down spin. According to this model the

particle density,

n(r) = n(r, σ =↑) + n(r, σ =↓) (3.27)

and the spin density

s(r) = n(r, σ =↑)− n(r, σ =↓) (3.28)

This results the energy density as

E = EHK [n, s] ≡ ´EHK (3.29)

Where [n] denotes the functionl of the density which depends both on space and

spin. In absance of external Zeeman fields, the soluton of lowest energy may be spin

polarized. This is,

n(r, σ =↑) ̸= n(r, σ =↓) (3.30)

which is anologous to the broken symmetry solution of unrestricted Hartree-Fock

theorem. The usefulness of spin Density Functional Theory is in these cases as well.

The original Hartree-Fock theorem are valid and the ground state is determined by

total ground state density n(r, σ =↑) + n(r, σ =↓) for the system where there is no

spin dependent external potential.
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3.6 PBE (Perdew Burke Ernzerhof)

The PBE form is the simplest GGA (Generalized Gradient Approximation) func-

tional. Hence we give it as an explicit example. The reader is referred to other

sources such as the paper on Comparison shopping for a gradient-corrected density

functional, by Perdew and Burke. The PBE functional for exchange is given by a

simple form for the enhancement factor Fx.The form is chosen with Fx(0) = 1 (so

that the local approximation is recovered) and Fx constant at large s,

Fx(s) = 1 + κ− κ

(1 + µs2

κ
)

(3.31)

where κ = 0.804 is chosen to satisfy the LiebOxford bound. The value of µ = 0.21951

is chosen to recover the linear response form of the local ap- proximation, i.e. it is

chosen to cancel the term from the correlation. This may seem strange, but it is done

to agree better with quantum Monte Carlo calculations. This choice violates the

known expansion at low s given in Eq. (3.31), with the rationale of better fitting the

entire functional. Correlation takes the form of a local correlation and an additive

term, both of which are dependent on gradients and spin polarization [67].

The form chosen to satisfy a number of requirements is

EGGA−PBE
c [n ↑, n ↓] =

∫
d3rn[ϵhomC (rs, ζ) +H(rs, ζ, t)] (3.32)

where ζ = (n ↑, n ↓)/n is the spin polarization,r s is the local value of the density

parameter, and t is a dimensionless gradient t = |∇n|/(2ϕκTFn) .Here ϕ = ((1 +

ζ)
2
3 + (1ζ)

2
3 )/2 and t is scaled by the screening wavevector kTF rather than kF .

The final form is

H =
e2

a0
γϕ3log(1 +

β

γ
t2

1 + At2

1 + At2 + A2t4
(3.33)

where the factor e2

a0
, with a0 the Bohr radius, is unity in atomic units. The function

A is given by
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A =
β

γ
[exp(

−ϵhomc

γϕ3 e2

a0

− 1]−1 (3.34)

∏
k=0
k ̸=i

(3.35)

3.7 Applications

The density of states appears in many areas of physics, and helps to explain a number

of quantum mechanical phenomena. Some uses of DFT are: Calculating the density

of states for small structures shows that the distribution of electrons changes as di-

mensionality is reduced. For quantum wires, the DOS for certain energies actually

becomes higher than the DOS for bulk semiconductors, and for quantum dots the

electrons become quantized to certain energies [68].

LDOS can be used to gain profit into a solid-state device. For example, the figure

on the right illustrates LDOS of a transistor as it turns on and off in a ballistic sim-

ulation. The LDOS has clear boundary in the source and drain, that corresponds

to the location of band edge. In the channel, the DOS is increasing as gate voltage

increase and potential barrier goes down [69].

An important feature of the definition of the DOS is that it can be extended to

any system. One of its properties are the translationally invariability which means

that the density of the states is homogeneous and it’s the same at each point of the

system. But this is just a particular case and the LDOS gives a wider description

with a heterogeneous density of states through the system [70].

DFT is used to study other properties like optical property, magnetic property of a

material. By computing the electronic band structure and density of states (DOS),

DFT is utilised to comprehend a material’s optical characteristics. By analyzing

the band structure and DOS, it is possible to determine the electronic transitions

that give rise to the material’s absorption and emission spectra. Other optical char-

acteristics, such the refractive index and the dielectric function, may be calculated
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using DFT and are crucial for understanding how light interacts with the material.

DFT can measure a material’s magnetic moment, which indicates its magnetic field

strength. They can calculate magnetic susceptibility, which measures how quickly

a substance magnetises in a magnetic field. DFT also study ferromagnetism, anti-

ferromagnetism, and spin glass behaviour [70].

The photon density of states can be manipulated by using periodic structures with

length scales on the order of the wavelength of light. Some structures can completely

inhibit the propagation of light of certain colors (energies), creating a photonic band

gap: the DOS is zero for those photon energies. Other structures can inhibit the

propagation of light only in certain directions to create mirrors, waveguides, and

cavities. Such periodic structures are known as photonic crystals. In nanostruc-

tured media the concept of local density of states (LDOS) is often more relevant

than that of DOS, as the DOS varies considerably from point to point [71].

DFT can be used to study the X-ray absorption spectra and X-ray emission spectra

of a material. X-ray absorption spectroscopy (XAS) examines how the amount of

X-rays absorbed by a sample changes with the energy of the X-rays. The absorption

spectrum shows how the particles in the material are put together electronically. On

the other hand, X-ray emission spectroscopy (XES) tracks how the energy of the

light that a sample gives off after being excited by X-rays. DFT can be used to

figure out how the material’s electrons are organized and to model the XAS and

XES spectra. By comparing the simulated spectrum to the real spectrum, you can

learn about the electronic structure of the object [72].

38



Chapter 4

Result and Discussion

Before dealing with any double perovskites compound, it is essential to understand

the compound’s properties such as its electrical and optical ones. Nevertheless, the

experimental technique requires a lot of resources or financial backing. Computa-

tional studies based on density functional theory can guide experimental efforts and,

in many cases, offer a deeper understanding of the synthesis, related properties, and

use of new materials.

Density functional theory may be used to determine many different properties, in-

cluding electronic, optical, elastic, and thermoelectronic. The WIEN2k package, a

computer program, investigates structural, electrical, magnetic, and optical char-

acteristics using the full-potential linearized augmented plane wave approach (FP-

LAPW) based on density functional theory (DFT) [73]. To identify the ideal ground

states of the materials under study, the Perdew-Burke-Ernzerhof (PBE) approxima-

tion [74] can be employed in combination with the generalized gradient approxi-

mation (GGA). Nevertheless, since the electronic bandgap is overestimated by the

PBE-GGA level of theory, it is feasible to construct more accurate band gaps using

the Trans and Blaha modified Becke and Johnson potential (TB-mBJ) [75].
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4.1 Method of Calculation

Under the framework of density functional theory, the structural, electronic, optical

properties of the Ca2GaAsO6 are investigated using full potential linearized aug-

mented plane (FP-LAPW) method, approach implemented in the WIEN2k package.

The generalized gradient approximation (GGA) for determining the exchange and

correlation potential energy in Khon-Sham equation that gives the final result. The

generalized gradient approximation is used to optimize the parameters (RKmax ,

k-point, and lattice constant). For the double perovskitess Ca2GaAsO6 the RMT

values taken for Ca, Ga, As, and O are 2.5, 1.93, 1.81, and 1.64 a.u. respectively.

We set RKmax = 7 after optimization of energy where, R is the smallest radius of

the muffin-tin sphere and RKmax is the largest reciprocal lattice vector that used in

the expansion of flat wave function. Moreover, the number of k-point has selected

to 4000 for SCF (Self Consistent Field ) in Brillouin zone and 20000 for DOS cal-

culation. The charge convergence and energy convergence has selected respectively

0.001 e and 0.00001 Ry during SCF (Self Consistent Field) cycle calculation.

The Murnaghan equation of state is used to compute energy as a function of latice

constant in order to determine the stability of the compound in the structure under

investigation before moving on to any electronic or magnetic properties. The vol-

ume optimization is provided with WIEN2k package that determines the minimum

energy possessed by a system by plotting volume vs energy graph. It is clear that

every system tries to in its minimum energy level and so we plotted total energy vs

volume plots.

4.2 Structural Properties

In this thesis, the structure of double perovskites Ca2GaAsO6 is generated by XCryS-

Den software in WIEN2k. The crystral structure with space group-225 (Fm3̄m) for

the double perovskitess Ca2GaAsO6 is a cubic structure. A simple structure of
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double perovskites is given in Figure 4.1:

Figure 4.1: Crystal structure of the double perovskites Ca2GaAsO6

A unit cell of this crystal structure contains 143 atoms, 258 bonds, and 35 polyhe-

dra.Out of the 143 atoms, Ca has 8 atoms, Ga has 14 atoms, As has 13 atoms, and

O has 108 atoms.We found unit cell volume = 439.377339 Å Here, we calculated

energy as a function of lattice constant in order to determine the stability of the

compound in the structure under investigation before moving on to any electronic or

magnetic properties. The volume optimization feature of the WIEN2k package cal-

culates the system’s smallest energy requirement by plotting the volume vs. energy

graph outlined in Figure 4.2:
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Figure 4.2: Volume optimization curve of Ca2GaAsO6

By volume optimization, the lattice constant has found to be 14.366300 bohr. It

is clear that every system tries to in its minimum energy level, and so we plotted

total energy vs volume plots. By using Murnaghan fit we see that the calculated

minimum energy = -12035.75543376 Ry corresponding to the volume of 741.32915

bohr3

4.3 Electronic Properties

The number of unique states that electrons can occupy at a given energy level or the

number of electron states per unit volume per unit energy is known as the density

of states (DOS). The bulk properties of conductive substances, such as specific heat,

paramagnetic susceptibility, and other transport phenomena, are controlled by this

function.

We must use generalized gradient approximation GGA, which is available as Perdew-

Burke-Ernzerhof (PBE) functional, to calculate the band structure and total density

of state (TDOS) in order to understand the electrical properties of double perovskites

Ca2GaAsO6.

The optical properties of a material defines how it interacts with light. We have

studied the dielectric function, reflectivity, optical conductivity, refractive index, ab-
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sorption coefficient, and electron energy loss for understanding the optical properties

of double perovskites Ca2GaAsO6 by generalized gradient approximation (GGA).

4.3.1 Band Theory and Band Gap

The introduction of band theory happened during the quantum revolution in sci-

ence. Walter Heitler and Fritz London discovered the energy bands [76].

We know that the electrons in an atom are present in different energy levels. When

we try to assemble a lattice of a solid with N atoms, then each level of an atom must

split up into N levels in the solid. This splitting up of sharp and tightly packed

energy levels forms Energy Bands. The gap between adjacent bands representing a

range of energies that possess no electron is called a Band Gap.

The band gap generally refers to the energy difference between the top of the valence

band and the bottom of the conduction band in insulators and semiconductors. It

is the energy required to promote a valence electron bound to an atom to become a

conduction electron, which is free to move within the crystal lattice and serve as a

charge carrier to conduct electric current.

The distinction between semiconductors and insulators is a matter of convention.

One approach is to think of semiconductors as a type of insulator with a narrow

band gap. Insulators with a larger band gap, usually greater than 3 eV.

The band-gap energy of semiconductors tends to decrease with increasing temper-

ature. When temperature increases, the amplitude of atomic vibrations increases,

leading to larger interatomic spacing. The interaction between the lattice phonons

and the free electrons and holes will also affect the band gap to a smaller extent.

The relationship between band gap energy and temperature can be described by

Varshni’s empirical expression.

Eg(T ) = Eg(m)− αT 2

T + β
(4.1)

where Eg(m), α and βare material constants.
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4.3.2 Band Structure

The investigation of the electronic band structure is necessary to understand the

physical properties of crystalline solids which almost completely describe optical as

well as transport properties. One of the main goals of this thesis is to generate the

band structure and determine the band gap of double perovskitess Ca2GaAsO6.

We used the WIEN2k software to generate the band structure. It is noticed that

the band is not overlap between the conduction band and the valence band in the

Fermi level both in the Figure 4.3a and 4.3b:
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Figure 4.3: Band gap of Ca2GaAsO6 compound in (a)PBE and (b)mBJ

The energy gap between the top of the Valance Band (VB) and the bottom of the

Conduction Band (CB) is approximately 0.393 eV for PBE potential and 2.607 eV

for mBJ potential. The valance band maximum and conduction band minimum are

located at the Γ point. The electronic band structure of Ca2GaAsO6 in Figure 4.3

shows semiconducting behavior.
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4.3.3 DOS and PDOS

The number of unique states that electrons can occupy at a given energy level, or

the number of electron states per unit volume per unit energy, is known as the den-

sity of states (DOS). The bulk properties of conductive substances, such as specific

heat, paramagnetic susceptibility, and other transport phenomena, are controlled by

this function. The density of states is directly related to the dispersion relations of

the properties of the system. High DOS at a specific energy level means that many

states are available for occupation. Advancements in first-principles techniques for

studying the electronic structures of materials [77] have made calculations of the

density of states routine [78, 79]; yet, some that are published do not exhibit the

features described in this review. To calculate a sufficient-quality DOS, appropriate

input parameters must be explicitly specified. Depending on the quantum mechani-

cal system, the density of states can be calculated for electrons, photons, or phonons,

and can be given as a function of either energy or the wave vector k. To convert

between the DOS as a function of the energy and the DOS as a function of the

wave vector, the system-specific energy dispersion relation between E and k must

be known.

The density of state (DOS) of double perovskites Ca2GaAsO6 for PBE potential

and mBJ potential is shown in the Figure 4.4 :

Figure 4.4: Density of State (DOS) of Ca2GaAsO6 compound in (a)PBE and (b)mBJ
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One needs to compute the DOS of the system for detailed studies of the formation

of energy bands. From previous section we got the band gap approximately 0.393

eV for PBE potential and 2.607 eV for mBJ potential which indicates the compound

is semiconductor. From Figure 4.4, it is clear that the total DOS has peaks in the

valence band region is slightly less than the conduction band region for PBE poten-

tial but more than for mBJ potential. It means most of the electrons in different

atoms are not free from their respective atoms for mBJ potential. The contribution

of electrons of O atoms in the valence band is way greater than other atoms in

both potential but contribution of electrons of Ca is greater than other atoms in

conduction band for PBE potential.
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Figure 4.5: The partial density of state (PDOS) projected on the orbits of (a) Ca and
(b) Ga atoms of Ca2GaAsO6 compound

From Figure 4.5a it can be say that the contribution of the electrons of Ca atoms in

the conduction band region is more than the valence band region for both potential,
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where the electrons of the s and p orbitals don’t contribute significantly. Figure 4.5b

shows that most of the electrons of the Ga atom are in the valence band region and

the contribution of the electrons of the d orbital is greater than that of the s and

p orbitals. We also see that the keen peaks for d and s orbital electrons are near

and far from the Fermi energy level, respectively. It is seen that the contribution of

s orbital electrons to the conduction band is less than that of the others following

the p orbital. From Figure 4.5c, we see that most of the peaks are in the valence

band region, but there is also a significant peak in the conduction band region. In

the valence band region, p orbital electrons contribute most, followed by d orbital

electrons. On the other hand, the contribution of s orbital electrons to the valence

band region is way more than the electrons of other orbitals. Now, looking at Figure

4.5d, we can say the electrons of O atoms are mostly occupied in the valence band

region rather than the conduction band region, and the electrons of p atoms have a

higher concentration than the s ones.

4.4 Optical Properties

The term optical property describes a material’s behavior when electromagnetic

radiation (light) is incident on the material’s surface or, in other words, how a ma-

terial interacts under an incident electromagnetic radiation. The optical properties

of matter are studied in optical physics, a subfield of optics. Different types of ma-

terial show different optical properties due to differences in physical, chemical, and

mechanical characteristics. The knowledge of optical properties is very important in

various industrial as well as in scientific applications. In the selection of material for

the purpose of contactless temperature measurement devices, heat transfer meth-

ods, laser technology, etc., complete knowledge of optical properties of materials is

necessary for efficient operation. The optical properties of a material defines how it

interacts with light.
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4.4.1 Dielectric Function

The correlation between energy band structure and optical transition is expressed

by the complex dielectric function of a material. The complex dielectric function of

the semiconductor material is

ϵ(ω) = ϵ1(ω) + iϵ2(ω) (4.2)

The dielectric function can be used to describe how an electromagnetic field af-

fects a material’s optical response. The real and imaginary dielectric function for

Ca2GaAsO6 was obtained from mBJ potential in Figure 4.6 where energy plotted

in the X-direction, real and imaginary dielectric function plotted in the Y-direction.

This figure represents the curve for real dielectric function. As can be seen in Figure,

the curves in these compounds are opposite configurations in the infrared region.
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Figure 4.6: (a)Real and (b)imaginary dielectric function of double perovskitess
Ca2GaAsO6 compound

In Figure 4.6 we can see that the imaginary dielectric tensor is high in the infrared

region for Ca2GaAsO6 compounds. After the visible region the imaginary dielectric

tensor decreasees abruptly. It is introduced as a significant characteristics of a

specific crystallographic medium.
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4.4.2 Absorption Coefficient

The absorption coefficient is a significant physical property that defines the abil-

ity of a material to absorb and reduce the intensity of electromagnetic radiation.

Absorption coffiecient helps to measure that a substance can be used for shielding

purposes as an anti-reflecting coating. The absorption coffiecient versus energy is

illustrated in the following figure by using mBJ potential :

Absorption coffiecient of Ca2GaAsO6 compound is in Figure 4.7 :
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Figure 4.7: Absorption coefficient of double perovskitess Ca2GaAsO6 compound

Figure 4.7 shows that although the double perovskites exhibits significant absorption

peaks in the ultraviolet region of the electromagnetic spectrum, it also exhibits

significant absorption in the visible region of light, making it a good candidate for

use in electro-optical applications in the visible region.

4.4.3 Optical Reflectivity and Refractive Index

Material reflectivity is important in determining how much light a material can

reflect in relation to the amount of light. The refractive index is known that the re-

fractive indices are inversely related to the bandgap, if the refractive index increases
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corresponding band gap decreases. The refractive index can be written as

n =
1√
2
(
√

(Reϵ(ω))2 + (Imϵ(ω))2 + (Reϵ(ω))
1
2 (4.3)

Optical reflectivity vs energy curve for double perovskites Ca2GaAsO6 is represented

in Figure 4.8a for the double perovskitess Ca2GaAsO6 :
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Figure 4.8: (a)Optical reflectivity and (b)refractive Index of double perovskitess
Ca2GaAsO6

From Figure 4.8a, we can see that the optical reflectivity increase for the increase

of energy. In Figure 4.8b, it can be seen that in the lower energy range, there are

higher values of refractive index for the compounds. The refractive index increases

with the increase in energy and reaches its maximum value of about n = 2.21 at the

energy of E = 7.83 eV .

4.4.4 Optical Conductivity

The optical conductivity is one of the crucial metrics used to describe the optical

characteristics of solids, and it is primarily employed to identify any potential in-

terband optical transitions that may still be permitted in a given substance. The

complex optical conductivity (σ∗ = σ1 + iσ2) is related to the real and imaginary

parts (Reϵ(ω), Imϵ(ω)) of the complex dielectric function ϵ∗(ω) by the following

expressions

σ1 = ωϵ2ϵ0 (4.4)
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σ1 = ωϵ2ϵ0 (4.5)

where ω =(2πµ) is the angular frequency and (ϵ 0 = 8.854× 10−12 Fm−1) is the free

space dielectric constant.
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Figure 4.9: (a)Real and (b)imaginary part of optical conductivity for double perovskitess
Ca2GaAsO6 compound

According to Figure 4.9a, this material exhibits a significant value of σ1 in the visible

area of light, despite the fact that the true component of optical conductivity’s most

significant peaks emerge in the electro-magnetic field’s ultraviolet region. We found

that the value of σ1 is initially zero and remains close to zero in the range from 0.0 eV

to 3.34 eV, then increases gradually. Figure 4.9b shows that, at first, the imaginary

component of optical conductivity falls with a rise in energy until it reaches a specific

point, where it is at its lowest. We found the minimum value to be -4.2 at 7.86 eV.

After that minimum value, it increases with increasing energy.

4.4.5 Electron Energy Loss

Energy loss function is the energy lost by a fast-moving electron as it travel through

a substance. It’s a very significant phase since it offers information about the sample

or material’s structure.
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Figure 4.10: Electron energy loss of Ca2GaAsO6 compound

The electronic energy loss function of a material can be extended from the dielectric

function to further characterize the energy loss when electrons flow through a uni-

form dielectric. According to the Figure 4.10, as electron energy increases, electron

energy loss also increases because of the electrons and atoms in the compound in-

teract. Consequently, the electrons release energy through processes like excitation

and ionization. There are numerous picks available in various energies. It is due to

the presence of various atoms in our materials.
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Chapter 5

Conclusion

The structural, electronic and optical properties of the double perovskites com-

pound Ca2GaAsO6 has explored by using first-principles calculations. The elec-

tronic band structure of Ca2GaAsO6 has examined using density functional theory

(DFT) in the context of the modified Becke Johnson (mBJ). Our calculations show

that Ca2GaAsO6 is a semiconductor with a moderate Γ point direct bandgap of

about 2.607 eV, obtained with the modified Becke Johnson (mBJ) potential. It has

been determined that the compound exibits direct band-gap characteristics. The

density of states has also demonstrated that this compound is a semiconductor.

The electrons in Oxygen atoms have been shown to contribute most to the region

of the valence band, whereas the electrons in Calcium atoms have been found to

contribute most to the region of the conduction band. The optical characteristics

display interesting phenomena with good optical absorption in the visible area. By

calculating the absorption and emission spectra, we gained insights into the ma-

terial’s ability to absorb and emit light at different energy levels. These optical

properties make Ca2GaAsO6 a promising candidate for applications in solid-state

lighting, photovoltaics, and other optoelectronic devices. Overall, the results pre-

sented in this thesis contribute to the comprehensive understanding of Ca2GaAsO6

and its potential applications in various technological fields.
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However, it is important to note that our study is based on theoretical calcula-

tions and assumptions. Future research should focus on computational verification

of our findings and the synthesis of Ca2GaAsO6 to confirm its predicted proper-

ties. Additionally, exploring the influence of doping and alloying on the properties

of Ca2GaAsO6 could provide further opportunities for tailoring its properties and

expanding its range of applications.

In conclusion, this thesis has provided a comprehensive investigation of the struc-

tural, electronic and optical properties of Ca2GaAsO6 through a first-principles

study. The results presented here not only deepen our understanding of this double

perovskites compound but also contribute to the broader field of materials science.

The findings pave the way for future research and development in the design of novel

materials for advanced electronic and optoelectronic applications.
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Chapter 6

List of Abbreviations

BZ : Brillouin Zone

DFT : Density Functional Theory

DOS : Density of States

GGA : Generalized Gradient Approximation

HK : Hohenberg-Kohn

KS : Kohn-Sham

LSDA : Local Spin Density Approximation

SOC : Spin Orbit Coupling

XC : Exchange correlation

GMR : Giant Magnetoresistance

EM : Electro Magnetic

NM : Non Magnetic

DOS : Density of States

PDOS : Partial Density of States

AF : Antiferromagnetic

NMR : Nuclear Magnetic Resonance
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