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Abstract

In this work, the structural, mechanical, optoelectronic and thermoelectric prop-

erties of K2AgXI6 (X = Sb, Bi) double perovskite materials are investigated using

Density Functional Theory (DFT) as implemented in WIEN2k code both at ambient

and under different hydrostatic pressure ranging up to 20 GPa for K2AgSbI6 and

up to 50 GPa for K2AgBiI6. The structural stability of the compounds are ensured

by the Goldschmidt tolerance factor (τ) and the octahedral factor (µ). Our studied

compounds exhibit perfectly cubic structures with the space group Fm3̄m (space

group no. 225). The band structure shows p-type semiconducting nature with an

indirect band gap of 0.97 eV for K2AgSbI6 and 1.599 eV for K2AgBiI6 at ambient

condition and band gap gradually decreases with induced pressure. Optical analy-

sis shows that the highest transition occurs in the visible spectrum after increasing

pressure for both systems compared to ambient conditions. Therefore, the stud-

ied compounds under investigation may be suitable for solar cell applications. The

transport properties of both materials are investigated using the BoltzTraP code to

estimate the electrical and thermal conductivities, Seeback coefficient, power fac-

tor, and figure of merit under different hydrostatic pressures. The high values of

the Seebeck coefficient and the figure of merit ensure that the studied compounds

are suitable for thermoelectric applications at ambient conditions rather than under

pressurized conditions. Finally, our studied compounds demonstrate good mechani-

cal stability under applied pressure, indicating that pressure has a significant impact

on their mechanical resilience.
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Chapter 1

Introduction

One of the most crucial initiatives for combating the greenhouse effect for a sus-

tainable environment is the search for clean energy conversion [1–3]. Conventional

energy sources (fossil fuels), due to their non-renewable nature, cannot keep up

with the rapid economic growth, leading to continuously increasing energy demands

[4–6]. Additionally, traditional energy sources are non-renewable and release various

toxic gases and by-products, compromising environmental safety and contributing

to global warming [7]. To adress these issues, renewable energy sources that pro-

vide a continuous energy supply and are environmentally friendly are needed [8].

For instance, solar cells utilize the photovoltaic effect to transform solar energy into

usable electrical energy. This efficient energy conversion is highly dependent on the

semiconducting properties of the absorbing layer [9]. Generally, perovskite semi-

conductors (ABX3, where A and B are cataions and X is anaion) are affordable and

simple to produce. Organic-inorganic lead halide perovskite solar cells are known for

their high energy conversion efficiency [10,11]. However, their practical use is limited

due to instability and the toxic nature of lead [12]. To adress these issues, research

is also being conducted on perovskites containing nontoxic elements [13, 14]. De-

spite this, challenges such as ion migration, long-term stability in humid conditions,

and limited response time continue to impede their practical applications [15].
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Introduction

Double perovskites (DPs) have recently become interesting contenders in the fields

of solar cells and catalysis because of their high energy conversion efficiency. Double

perovskite have a wide range of applications, including solar cells [16] optoelectron-

ics [17], thermal devices [18] and sensors [19]. Finding stable, environmentally

acceptable, non toxic DPs materials has therefore been seen as a strategically sig-

nificant area of research in recent years. In this regard, lead-free halides and double

perovskite oxides, where lead is substituted with silver (Ag), bismuth (Bi), and

so on, have attracted significant attention from both theoretical and experimental

viewpoints. This class of materials has been shown to be promising materials due

to their strong optical conductivity, low reflectivity and high absorption coefficients.

Lead-free halide double perovskites can have a wide range of compositions to opti-

mize their material properties. This versatility arises from their structural formula,

A2BB
′ X6, which allows for numerous combinations of monovalent ions at the B

sites and trivalent ions at the B′ sites. Additionally, various ions can occupy the

A-sites, and different halogen ions can be incorporated at the X-sites [20]. Re-

cently, a wide range of inorganic and organic-inorganic hybrid materials based on

double perovskite have been studied in the literature. Many other lead free DPs

including Cs2AgInCl6 [21], Cs2AgSbCl6 [22], Cs4CuSb2Cl2 [23], KGeI3-xBrx [24]

and Cs2AgFeCl6 [25] given optical and adjustable photoluminescene characteris-

tics. Power conversion efficiency (PCE) of solar cells based on perovskites reached

22 percent [26]. Progressive studies are expected to have a PCE of more than 25

percent [27,28].

First-principles calculations have become a highly appealing method for computing

and analyzing various material properties, as well as determining their thermody-

namic stability. Numerous double perovskite halides have been theoretically investi-

gated for their potential in optical applications [29–31]. A recent theoretical study

on K2AgBiX6 (X = Cl, Br) has shown that halogen ions can adjust energy gaps,

which could be beneficial for optical and thermoelectric applications [32]. Similarly,

theoretical investigations of Cs2InAgX6 (X = Cl, Br, I) [33], Cs2InBiX6 (X = Cl,

Br, I) [34], and Cs2InSbX6 (X = Cl, Br, I) [35] indicate that substituting halogen
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ions can potentially tune band gaps, thereby optimizing the materials’ optical and

thermoelectric properties. Moreover, researchers have been deeply studying double

perovskite materials in recent years. For example, Junaid Munir et al. studied the

structural, phonon, elastic, electronic, transport, and optical properties of double

perovskites K2TlAsX6 (X = Cl, Br) using first-principles calculations. They found

that these systems are mechanically and thermodynamically stable, making them

suitable for optoelectronic and renewable applications. [36]. Ghulam M. Mustafa,

A., et al. investigated the optoelectronic and thermoelectric characteristics of halide

based double perovskites K2YAgX6 (X = Br,I) and showed them to be the suitable

candidate for thermoelectric applications [37]. F. Wang, W. Ning, et al. studied

the lead-free halide double perovskite Cs2AgBiBr6, achieving the smallest reported

bandgap for this material by controlling the growth temperature of single crystals

[38]. The electronic and optical properties of lead-free hybrid double perovskites for

photovoltaic and optoelectronic applications were investigated by M. Roknuzzaman

et al. Their findings indicated that the organic-inorganic halide double perovskite

(FA)2BiCuI6 is the most promising candidate, possessing the desirable properties for

photovoltaic and optoelectronic applications [39]. N.R. Kumar et al. successfully

synthesized Cs2AgBiX6 (X = Cl, Br, I), a lead-free halide double perovskite [40].

Their research indicated that these materials possess indirect band gaps of 1.91 eV

for Cs2AgBiCl6, 1.42 eV for Cs2AgBiBr6, and 0.89 eV for Cs2AgBiI6, which are

in good agreement with reported theoretical and experimental results. All of this

research results in good optical and mechanical contributions to practical purposes.

Due to their surprisingly high stability and electronic structure, these materials are

used in a wide variety of sustainable and renewable applications [41, 42].

However, to understand the electronic, optical and other characteristics of a double

perovskite it is essential to comprehend its usefulness in various fields. Density func-

tional theory (DFT) based computational studies can guide experimental efforts and

often offer deeper insights into the properties, synthesis, and applications of mate-

rials. DFT can accurately determine various properties such as electronic, optical,

elastic, and thermoelectronic characteristics [43–46], with numerous observations

validating its accuracy through comparison with experimental data.

3
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Our study determines the structural, mechanical, optoelectronic and thermoelec-

tric porperties of K2AgXI6 (X = Sb, Bi) under induced hydrostatic pressure. The

pressure effect can cause notable alterations in the physical characteristics of dou-

ble perovskite materials, opening up new possibilities for adjusting and regulating

their behavior [47, 48]. A material’s different properties can be readily adjusted by

applying a hydrostatic pressure [49–51]. The electron orbits in pressure-dependent

samples migrate in the direction of the electric field and the band-gap energy shrinks.

Consequently, the bonding energy within the octahedral state is altered, leading to

a decrease in the band gap energy and primarily affecting the boundary conditions

of the electronic wave functions. In materials, pressure can cause structural phase

transitions [52]. The arrangement of atoms within the crystal lattice can change

significantly at high pressures [53]. The overall symmetry of the crystal structure

as well as bond lengths and bond angles may alter as a result. The electronic and

magnetic properties can be altered by pressure-induced changes in the crystal struc-

ture [54, 55]. For instance, pressure can modify the density of states close to the

Fermi level, which can change electronic bandgaps or electrical conductivity [56].

In this study, we employ the first-principles calculation method based on Density

Functional Theory (DFT), utilizing the WIEN2k code [57]. WIEN2k is a widely

recognized and efficient software package for performing DFT calculations, offering

robust capabilities for studying the electronic, optical, and mechanical properties of

materials. The significance of choosing double perovskite materials for our research

with both ambient and under applied hydrostatic pressure because of their interest-

ing applications. In Chapter 2, we discuss the fundamentals of quantum mechanics.

Chapter 3 delves into density functional theory, including various approximations.

Chapter 4 explores the structural, mechanical, optoelectronic, and thermoelectric

properties of lead-free halide double perovskites K2AgXI6 (X = Sb, Bi) under ap-

plied hydrostatic pressure. Finally, in the concluding chapter, we summarize our

findings on the characteristics and potential applications of these materials, both at

ambient and pressurized conditions.
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Chapter 2

Basic Quantum Mechanics

2.1 Schrödinger equation

Schrödinger equation refers to a fundamental equation of quantum physics. The

Schrödinger equation is a linear partial differential equation that governs the wave

function of a quantum-mechanical system. It is a key result in quantum mechanics,

and its discovery was a significant landmark in the development of the subject. The

equation is named after Erwin Schrödinger, who postulated the equa- tion in 1925,

and published it in 1926 [58]. The time-independent Schrödinger equation,

Ĥψ(r⃗) = Eψ(r⃗) (2.1)

Where, Ĥ is the hamiltonian operator and ψ is the wave function. It is often

impracticable to use a complete relativistic formulation of the formula; therefore

Schrödinger himself postulated a non-relativistic approximation which is nowadays

often used, especially in quantum chemistry.

Using the Hamiltonian for a single particle,

Ĥ = T̂ + V̂ = − ℏ2

2m
∇⃗2 + V (r⃗) (2.2)

5
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leads to the (non-relativistic) time-independent single-particle Schrödinger equation,

Êψ(r⃗) =

[
− ℏ2

2m
∇⃗2 + V (r⃗)

]
ψ(r⃗). (2.3)

For N particles in three dimensions, the Hamiltonian is,

Ĥ =
N∑
i=1

p̂2i
2mi

+ V (r⃗1, r⃗2, ...r⃗N) = −ℏ2

2

N∑
i=1

1

mi

+ V (r⃗1, r⃗2, ....r⃗N) (2.4)

The corresponding Schrödinger equation reads,

Êψ(r⃗1, r⃗2, ...r⃗N) =

[
− ℏ2

2

N∑
i=1

1

mi

∇2
i + V (r⃗1, r⃗2, ...r⃗N)

]
ψ(r⃗1, r⃗2, ...r⃗N) (2.5)

Special cases are the solutions of the time-independent Schrödinger equation, where

the Hamiltonian itself has no time-dependency (which implies a time-independent

potential V (r⃗1, r⃗2, ..., r⃗N) and the solutions therefore describe standing waves which

are called stationary states or orbitals). The time-independent Schrödinger equation

is not only easier to treat, but the knowledge of its solutions also provides crucial

insight to handle the corresponding time-dependent equation. Furthermore, the

left hand side of the equation reduces to the energy eigenvalue of the Hamiltonian

multiplied by the wave function, leading to the general eigenvalue equation,

Eψ(r⃗1, r⃗2, ...r⃗N) = Ĥψ(r⃗1, r⃗2, ...r⃗N) (2.6)

Again, using the many-body Hamiltonian, the Schrödinger equation becomes,

Eψ(r⃗1, r⃗2, ...r⃗N) =

[
− ℏ2

2

N∑
i=1

1

mi

∇2
i + V (⃗(r⃗1, r⃗2, ...r⃗N)

]
ψ(r⃗1, r⃗2, ..., r⃗N) (2.7)

2.2 The wave function

A wave function is a mathematical representation of a particle’s quantum state as

a function of momentum, position, time and spin in quantum physics. It contains

6
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all the information about the particle’s state. A wave function is represented by the

Greek letter ψ (psi). The probability of finding an electron within the matter-wave

may be explained using a wave function. This may be produced by incorporating

an imaginary number that is squared to give a real number solution resulting in an

electrons position.

Max Born developed a probabilistic interpretation of the wave function as a probabil-

ity density, which is a major principle of the Copenhagen interpretation of quantum

mechanics [59,60].

|ψ(r⃗1, r⃗2, ...r⃗N)|2dr⃗1, dr⃗2, ...r⃗N . (2.8)

The particles 1, 2, ..., N are all present at the same time in the corresponding vol-

ume element dr⃗1, dr⃗2, ...dr⃗N which is the probability that is specified by equation

(2.8) [61]. If the positions of two particles are exchanged, the total probability

density cannot be affected. That is to written as,

|ψ(r⃗1, r⃗2, ...r⃗i, r⃗j, ...r⃗N)|2 = |ψ(r⃗1, r⃗2, ...r⃗j, r⃗i, ...r⃗N)|2. (2.9)

The symmetrical and anti-symmetrical wave functions are two possible wavefunction

behaviours during a particle exchange. The symmetrical wave function remains

unchanged as a result of such exchange, which corresponds to bosons (integer or zero

spin). However, the anti-symmetrical wave function shifts it’s sign to correspond to

fermions (half-integer spin) [62,63]. Because electrons are fermions, in this text may

explore the anti-symmetric fermion wave function. The Pauli exclusion principle,

which states that no two electrons may occupy the same orbital, is followed by the

anti-symmetric fermion wave function. Another result of probability interpretation

is the normalization of the wave function [62]. A particle’s wave function must be

normalized. The probability of finding the particle somewhere in space is unity as,

∫
dr⃗1

∫
dr⃗2...

∫
dr⃗N |ψ(r⃗1, r⃗2, ...r⃗N |2 = 1. (2.10)

Equation (2.10) is physically valid. Continuous and square-integrable wave func-

tions are required. In quantum physics, any wave function that is not continuous

and square-integrable has no physical meaning [64]. When we calculate the expec-

7
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tation values of operators with a wave function, we get the expectation value of the

corresponding observable for that wavefunction, which is another important aspect

of the wave function. This may be expressed for an observable, O(r⃗1, r⃗2, ...r⃗N) as,

O = ⟨O⟩ =
∫
dr⃗1

∫
dr⃗2

∫
dr⃗Nψ

∗(r⃗1, r⃗2, ...r⃗N)Ôψ(r⃗1, r⃗2, ...r⃗N). (2.11)

2.3 Born-Oppenheimer (BO) approximation

The Schrödinger equation of a many-body system is,

Htotψ({R⃗I}, {r⃗i}) = Eψ({R⃗I}, {r⃗i}). (2.12)

Where, Htot is the total Hamiltonian, E is the total energy and ψ({R⃗I}, {r⃗i}) is the

total wave function of the system. The total Hamiltonian of a many-body system

consisting of nuclei and electrons can be written as,

Ĥtot = −
∑
I

ℏ2

2MI

∇⃗2
R⃗I

−
∑
i

ℏ2

2me

∇⃗2
r⃗i
+

1

2

∑
I,J

ZIZJe
2

|R⃗I − R⃗J |

+
1

2

∑
i,j

e2

|r⃗i − r⃗j|
−
∑
I,i

ZIe
2

|R⃗I − r⃗i|
,

(2.13)

where, the indexes I, J run on nuclei, i and j on electrons, R⃗I and MI are posi-

tion and mass of the nuclei, r⃗i and me are position and mass of the electrons. The

first term of the above equation represents the kinetic energy of the Nuclei. Sec-

ond term represents the kinetic energy of the electrons. Third term 1
2

∑
I,J

ZIZJe
2

|R⃗I−R⃗J |

is for potential energy of nucleus-nucleus Coulomb interaction, the fourth term is

the potential energy electron-electron Coulomb interaction and the last term is the

potential energy of nucleus-electron Coulomb interaction. As nuclei are significantly

heavier than electrons (the mass of a proton is about 1836 times the mass of an

electron), the electrons travel considerably more quickly than the nuclei [64]. In

that case, Born-Oppenheimer (BO) approximation was proposed by Born and Op-

penheimer in 1927. The Born-Oppenheimer approximation is an assumption that it

8
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is possible to distinguish equation (2.13) between the nuclear and electronic motions

of molecules. Consider the nuclei to be static, classical potential with respect to the

electron, then address the electronic issue without further consideration of the nuclei

[65] . On the timeline of the electronic transition, it is possible to claim that the core

movement can be disregarded, i.e., it has no bearing on them [66–68]. Adopting

Born-Oppenheimer approximation the electronic hamiltonian the becomes,

Ĥ = −
∑
i

ℏ2

2me

∇⃗2
r⃗i
+

1

2

∑
i,j

e2

|r⃗i − r⃗j|
−

∑
I,i

ZIe
2

|R⃗I − r⃗i|
. (2.14)

The BO approximation’s importance lies in it’s ability to distinguish between the

motion of electrons and nuclei. The starting point of DFT is the electron motion in

a static external potential Vext(r⃗) created by the nucleus. Born and Huang expanded

the BO approximation, giving it the name Born-Huang (BH) approximation [69], to

account for more non-adiabatic effects in the electronic Hamiltonian than the BO

approximation did.

2.4 The Hartree-Fock (HF) approach

In order to find a suitable strategy to approximate the analytically not accessible

solutions of many-body problems, a very useful tool is variational calculus, similar to

the least-action principle of classical mechanics. By the use of variational calculus,

the ground state wave function ψ0 , which corresponds to the lowest energy of the

system E0 , can be approached [61]. Hence, for now only the electronic Schrödinger

equation is of interest, therefore in the following sections we set Ĥ ≡ Ĥel, E ≡ Eel,

and so on. Observables in quantum mechanics are calculated as the expectation

values of operators [70, 71]. The energy as observable corresponds to the Hamilto-

nian operator, therefore the energy corresponding to a general Hamiltonian can be

calculated as,

E = ⟨Ĥ⟩ =
∫
dr⃗1

∫
dr⃗2...

∫
dr⃗Nψ ∗ (r⃗1, r⃗2, ..., r⃗N)Ĥψ(r⃗1, r⃗2, ..., r⃗N) (2.15)

9
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The Hatree-Fock techique is based on the principle that the energy obtained by any

(normalized) trial wave function other than the actual ground state wave function

is always an upper bound, i.e. higher than the actual ground state energy. If the

trial function happens to be the desired ground state wave function, the energies

are equal,

Etrial ≥ E0 (2.16)

with

Etrial =

∫
dr⃗1

∫
dr⃗2...

∫
dr⃗Nψ

∗
trial(r⃗1, r⃗2, ..., r⃗N)Ĥψtrial(r⃗1, r⃗2, ..., r⃗N) (2.17)

and

E0 =

∫
dr⃗1

∫
dr⃗2...

∫
dr⃗Nψ

∗
0(r⃗1, r⃗2, ..., r⃗N)Ĥψ0(r⃗1, r⃗2, ..., r⃗N) (2.18)

For a detailed description of this notation, the reader is referred to the original

publication [72]. In that notation, equations (2.17) to (2.19) are expressed as,

⟨ψtrial|Ĥ|ψtrial⟩ = Etrial ≥ E0 = ⟨ψ0|Ĥ|ψ0⟩ (2.19)

Proof : [71] The eigenfunctions ψi of the Hamiltonian Ĥ (each corresponding to an

energy eigenvalue Ei form a complete basis set, therefore any normalized tria wave

function ψtrialcan be expressed as linear combination of those eigenfunctions.

ψtrial =
∑
i

λiψi (2.20)

The assumption is made that the eigenfunctions are orthogonal and normalized.

Hence it is requested that the trial wave function is normalized, it follows that,

⟨ψtrial|ψtrial⟩ = 1 = ⟨
∑
i

λiψi|
∑
j

λjψj⟩ =
∑
i

∑
j

λ∗iλj⟨ψi|ψj⟩ =
∑
j

|λj|2 (2.21)

10
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On the other hand, following equations (2.22) to (2.24),

Etrial = ⟨ψtrial|Ĥ|ψtrial⟩ = ⟨
∑
i

λiψi|Ĥ|
∑
j

λjψj⟩ =
∑
j

Ej|λj|2 (2.22)

Together with the fact that the ground state energy E0 is per definition the lowest

possible energy, and therefore has the smallest eigenvalue (E0 ≤ Ei), it is found

that,

Etrial =
∑
j

Ej|λj|2 ≥ E0

∑
j

|λj|2 (2.23)

what resembles equation (2.22). Equations (2.23) to (2.26) also include that a search

for the minimal energy value while applied on all allowed N-electron wave-functions

will always provide the ground-state wave function (or wave functions, in case of a

degenerate ground state where more than one wave function provides the minimum

energy). Expressed in terms of functional calculus, where ψ → N addresses all

allowed N-electron wave functions,

E0 = min
ψ→N

E[ψ] = min
ψ→N

⟨ψ|Ĥ|ψ⟩ = min
ψ→N

⟨ψ|T̂ + V̂ + Û |ψ⟩ (2.24)

Due to the vast number of alternative wave functions on the one hand and pro-

cessing power and time constraints on the other, this search is essentially unfeasible

for N-electron systems. Restriction of the search to a smaller subset of potential

wave functions, as in the Hartree-Fock approximation, is conceivable. A slater de-

terminant is a formula in quantum mechanics that desceibes the wave function of

a multi-fermionic system. It satisfies anti-symmetric criteria, and thus the Pauli’s

principle, by changing sign when two electrons are exchanged (or other fermions).

Only a small fraction of all potential fermionic wave functions can be expressed as

a single slater determinant, but because of their simplicity, they are an important

and useful subset. In the Hartree- Fock approach, the search is restricted to ap-

proximations of the N-electron wave function by an antisymmetric product of N

(normalized) one electron wave functions, the so called spin- orbitals χi(x⃗i) [73]. A

11
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wave function of this type is called Slater-determinant and reads,

ψ0 ≈ ϕSD = (N !)−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x⃗1) χ2(x⃗1) · · · χN(x⃗1)

χ1(x⃗2) χ2(x⃗2) · · · χN(x⃗2)
...

...
. . .

...

χ1(x⃗N) χ2(x⃗N) · · · χN(x⃗N)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.25)

It is important to notice that the spin-orbitals χi(x⃗i) are not only depending on

spatial coordinates but also on a spin coordinate which is introduced by a spin

function, x⃗i = r⃗i, s. Returning to the variational principle and equation (2.27), the

ground state energy approximated by a single slater determinant becomes,

E0 = min
ϕSD→N

E[ϕSD]

= min
ϕSD→N

⟨ϕSD|Ĥ|ϕSD⟩

= min
ϕSD→N

⟨ϕSD|T̂ + V̂ + Û |ϕSD⟩

(2.26)

A general expression for the Hartree-Fock Energy is obtained by usage of the Slater

determinant as a trial function.

EHF = ⟨ϕSD|Ĥ|ϕSD⟩ = ⟨ϕSD|T̂ + V̂ + Û |ϕSD⟩ (2.27)

For the sake of brevity, a detailed derivation of the final expression for the Hartree-

Fock energy is omitted. It is a straightforward calculation found for example in the

Book by Schwabl [70]. The final expression for the Hartree-Fock energy contains

three major parts: [73].

EHF = ⟨ϕSD|Ĥ|ϕSD⟩ =
N∑
i

(i|ĥ|i) + 1

2

N∑
i

N∑
j

[(ii|jj)− (ij|ji)] (2.28)

with

(i|ĥi|i) =
∫
χ∗
i (x⃗i)[−

1

2
∇⃗2
i −

M∑
k=1

Zk
rik

]χi(x⃗i)dx⃗i, (2.29)

12
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(ii|jj) =
∫∫

|χi(x⃗i)|2
1

rij
|χj(x⃗j)|2dx⃗idx⃗j, (2.30)

(ij|ji) =
∫∫

χi(x⃗i)χ
∗
j(x⃗j)

1

rij
χj(x⃗j)χ

∗
i (x⃗i)dx⃗idx⃗j (2.31)

The first term corresponds to the kinetic energy and the nucleus-electron inter-

actions, ĥ denoting the single particle contribution of the Hamiltonian, whereas

the latter two terms correspond to electron-electron interactions. They are called

Coulomb and exchange integral, respectively. Examination of equations (2.30) to

(2.34) furthermore reveals, that the Hartree-Fock energy can be expressed as a func-

tional of the spin orbitals EHF = E[{χi}]. Thus,variation of the spin orbitals leads

to the minimum energy. An important point is that the spin orbitals remain or-

thonormal during minimization.This restriction is accomplished by the introduction

of Lagrangian multipliers λi in the resulting equations, which represent the Hartree-

Fock equations.

f̂χi = λiχi i = 1, 2, ..., N (2.32)

with

f̂i = −1

2
∇⃗2
i −

M∑
k=1

Zk
rik

+
N∑
i

[Ĵj(x⃗i)− K̂j(x⃗i)] = ĥi + V̂ HF (i) (2.33)

Finally one arrives at the Fock operator for the i-th electron. In similarity to equa-

tions (2.30) to (2.34), the first two terms represent the kinetic and potential energy

due to nucleus-electron interaction, collected in the core Hamiltonian ĥi, whereas

the latter terms are sums over the Coulomb operators Ĵj and the exchange operators

K̂j with the other j electrons, which form the Hartree-Fock potential V̂ HF . There

are major approximation of Hartree-Fock can be seen. The two electron repulsion

operator from the original Hamiltonian is exchanged by a one-electron operator V̂ HF

which describes the repulsion in average.
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2.5 Limitation and failings of the Hartree-Fock

(HF) approach

Atoms as well as molecules can have an even or odd number of electrons. If the

number of electrons is even and all of them are located in double occupied spatial

orbitals ϕi, the compound is in a singlet state. Such systems are called closed-

shell systems. Compounds with an odd number of electrons as well as compounds

with single occupied orbitals, i.e. species with triplet or higher ground state, are

called open-shell systems respectively. These two types of systems correspond to

two different approaches of the Hartree-Fock method. In the restricted HF-method

(RHF), all electrons are considered to be paired in orbitals whereas in the unre-

stricted HF (UHF)-method this limitation is lifted totally. It is also possible to

describe open-shell systems with a RHF approach where only the single occupied

orbitals are excluded which is then called a restricted open-shell HF (ROHF) which

is an approach closer to reality but also more complex and therefore less popular

than UHF [73].

There are also closed-shell systems which require the unrestricted approach in order

to get proper results. For instance, the description of the dissociation of H2 (i.e. the

behavior at large internuclear distance), where one electron must be located at one

hydrogen atom, can logically not be obtained by the use of a system which places

both electrons in the same spatial orbital. Therefore the choice of method is always

a very important point in HF calculations [74]. Kohn states several M = p5 with

3 ≤ p ≤ 10 parameters for an output with adequate accuracy in the investigations of

the H2 system [75]. For a system with N = 100 electrons, the number of parameters

rises to,

M = p3N = 3300 to 10300 ≈ 10150 to 10300

According to the equation (2.37), energy reduction would have to be done in a space

with at least 10150 dimension, which is well above current computer capabilities. As

a result, HF methods are limited to situations involving a modest number of electron
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(N ≈ 10), This barrier commonly referred to as the exponential wall because of the

exponential component in (2.41) [75]. Since a many electron wave function cannot

be described entirely by a single Slater determinant, the energy obtained by HF

calculations is always larger than the exact ground state energy. The most accurate

energy obtainable by HF-methods is called the Hartree-Fock-limit. The Hartree-

Fock-limit is the most precise energy that can be calculated using HF-methods [76].

Since a many electron wave function cannot be described entirely by a single Slater

determinant, the energy obtained by HF calculations is always larger than the exact

ground state energy. The most accurate energy obtainable by HF-methods is called

the Hartree-Fock-limit. The difference between EHF and Eexact is called correlation

energy and can be denoted as [77],

EHF
corr = Emin − EHF . (2.35)

Despite the fact that Ecorr is usually small against Emin, as in the example of a N2

molecule where,

EHF
corr = 14.9eV < 0.001.Emin, (2.36)

it can have a huge influence [78]. For instance, the experimental dissociation energy

of the N2 molecule is,

Ediss = 9.9eV < Ecorr, (2.37)

which corresponds to a large contribution of the correlation energy to relative ener-

gies such as reaction energies which are of particular interest in quantum chemistry.

The main contribution to the correlation energy arises from the mean field approxi-

mation used in the HF-method. That means one electron moves in the average field

of the other ones, an approach which completely neglects the intrinsic correlation of

the electron movements. To get a better understanding what that means, one may

picture the repulsion of electrons at small distances which clearly cannot be covered

by a mean-field approach like the Hartree-Fock method.
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Chapter 3

Density Functional Theory

3.1 Overview

Computational methods have now become an essential aspect of the scientific world,

particularly in the calculation of issues. Computers and numerical approaches are

important for issues involving enormous quantities of particles,data and so on that

cannot be solved analytically. Additionally, it requires a large amount of funding or

resources for the experiment.

DFT is a type of ab initio method that is often referred to as a computational

quantum mechanical modeling method. The method is well-known at the matter of

quantum chemistry, condensed matter physics, materials science et cetera. The ap-

plication of this method starts with remedying the many-body Schrödinger equation

equation problem. However, DFT is more than just another method to solve the

Schrödinger equation equation. DFT provides an entirely distinct approach to any

interacting problem, translating it perfectly to more simple non-interacting prob-

lem. This methodology is broadly utilized for resolving a variety of issues, with the

electronic structure problem being the most common [59]. In DFT, the electron

density is used as the fundamental factor, instead of the wave-function. Another

method for solving the many-body Schrödinger equation equation is the Hartree-
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Fock approach, that use wave-functions to describe the electronic figure of atoms and

substance. However, this methods has several drawbacks, including a high cost of

calculation time for investigating big systems. But DFT has demonstrated superior

accuracy at a reduced computing cost, making it superior to all other approaches.

This facts makes DFT the most useful method to analyze electronic structure. Wal-

ter Kohn with his co-workers developed this “Density functional theory” and find

out the way of using the electron density to resolve the Schrödinger equation equa-

tion. For his timeworn work, he got novel prize in 1998 [60]. The chapter describes

their work in broad strokes, beginning with fundamental quantum physics, its issues,

and how DFT resolves them.

3.2 The electron density

The electron density (forN electrons) as the basic variable of density fuctional theory

is defined as [79] In electronic system, the number of electron per unit volume in

a given state is the electron density for a state designated by n(r⃗). Its formula in

terms of ψ is,

n(r⃗) = N
∑
s1

∫
dx⃗2...

∫
dx⃗Nψ

∗(x⃗1, x⃗2, ...x⃗N)ψ(x⃗1, x⃗2, ..., x⃗N). (3.1)

The electron density can also be described as a measurably obserable quantity based

simply on spatial coordinates if the spin coordinates are further neglected [75].

n(r⃗) = N

∫
dr⃗2...

∫
dr⃗Nψ

∗(r⃗1, r⃗2, ..., r⃗N)ψ(r⃗1, r⃗2, ..., r⃗N) (3.2)

with, for instance, an X-ray diffraction measurement. It must be confirmed that a

method employing the electron density as a variable actually contains all necessary

information about the system before it is presented. That entails, specifically, that

it must include details on the electron number n as well as the external potential

denoted by V̂ . By integrating the electron density over the spatial variables, one
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may get the total number of electrons.

N =

∫
dr⃗n(r⃗). (3.3)

For an atom in its ground state the density decreases monotonically away from the

nucleus [80]. The electron density at any atomic nucleus in an atom, molecule, or

solid has a finite value. Hohenberg and Kohn pointed out that if one knows the

density of the ground state of a many electron system, one can deduce from it the

external potential in which the electrons reside, up to an overall constant [65]. It

must be kept in mind that the only ways in which two many electron problem can

differ are in the external potentials V̂ and in the number of electrons that reside

in the potentials. According to this results, both of these external parameters are

determined by the electron density, so one can say that the density completely de-

termines the many body problem. This statement is surprising, because the density

is a real function of a single spatial variable while complete quantum mechanical

wave function needs N variables for its description. The starting point of the theory

is the observation of Hohenberg and Kohn that electron density contains in principle

all the information contained in a many electron wave function.

3.3 Thomas-Fermi model

The assumptions stated by Thomas are that, electrons are distributed uniformly in a

six dimentional phase space for the motion of an electron at the rate of two for each

h3 of volume and that there is an effective potential field that is itself determined

by the nuclear charge and this distribution of electrons. The Thomas Fermi formula

for electron density can be derived from these assumptions [65]. Let us consider

the space devided into many small cubes, each of side l and volume δV = l3 , each

containing some fixed number of electrons δN and we assume that the electrons in

each shell behave like indipendent fermions at the temperature 0 K, with the cells

independent of one another. The energy level of a particle in a three dimensional
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infinite well are given by the formula,

ϵ(nx, ny, nz) =
h3

8ml2
(n2

x + n2
y + n2

z) (3.4)

=
h3

8ml2
R2 (3.5)

Where nx, ny, nz = 1, 2, 3... and the second equality defines by the quantity R. For

high quantum numbers, that is, for large R, the number of distinct energy levels

with energy smaller than ϵ can be approximated by the volume of one octant of a

spherical with radius R in the space nx, ny, nz. This number is,

ϕ(ϵ) =
1

8
(
43

3
) (3.6)

=
π

6
(
8ml2ϵ

h2
)
3
2 (3.7)

The number of energy levels between ϵ and ϵ+δϵ is accordingly,

g(ϵ)∆ϵ = ϕ(ϵ+ δϵ)− ϕ(ϵ) (3.8)

=
π

4
(
8ml2ϵ

h2
)
3
2 ϵ

1
2 + ϕ(δϵ)2 (3.9)

where the function g(ϵ) is the density of states at energy ϵ. To compute the total

energy for the cell with electrons, we need the probability for the state with energy

to be occupied which we call f(ϵ). This is the Fermi Dirac distribution.

f(ϵ) =
1

1 + expβ(ϵ−µ)
(3.10)

where ϵf is the Fermi energy. All the states energy smaller than ϵf are occupied

and those with energy greater than ϵf are occupied. The Fermi energy ϵf is the zero

temperature limit of the chemical potential µ. Now we find the total energy of the

electrons in this cell by summing the contributions from the different energy states:
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∆E = 2

∫
ϵf(ϵ)g(ϵ)dϵ (3.11)

= 2

∫
ϵf(ϵ)

π

4
(
8ml2

h2
)
3
2 ϵ

1
2dϵ (3.12)

=
8π

5
(
2m

h2
)
3
2 l3ϵ

5
2
f (3.13)

where the factor 2 enters because each energy level is doubly occupied by one electron

with spin and another with spin β. The fermi energy Ef is related to the number

of electrons ∆N in the cell through the formula,

∆N = 2

∫
f(ϵ)g(ϵ)dϵ

=
8π

3
(
2m

h2
)
3
2 l3ϵf

3
2

(3.14)

Eleminating ϵf from 4.13 and 4.14 we have,

∆E =
3

5
∆NEf (3.15)

=
3h2

10m
(
3

8π
)
2
3 l3(

∆N

l3
)
5
3 (3.16)

Equation (3.16) is a relation between total kinetic energy and the electron density

n = ∆N
l3

= ∆N
∆V

for each cell in the space. Adding the contribution from all cells we

find the total kinetic energy to be, now reverting to atomic units,

TTF [n] = Cf

∫
n

5
3 (r⃗)dr⃗ (3.17)

where,

Cf =
3

10
(3π2)

2
3 = 2.871 (3.18)

Here, we first come across the LDA [65] one of the most significant concepts in

contemporary density functional theory. By using locally applicable relations suited

for a homogeneous electronic system, electronic characteristics are approximated as
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functions of the electron density. In terms of electron density, the energy formula

for an atom is,

TTF [n(r⃗)] = CF

∫
n

5
3 (r⃗)dr⃗ − Z

∫
n(r⃗)

r⃗
dr⃗ +

1

2

∫ ∫
n(r⃗1)n(r⃗2)

|r⃗1 − r⃗2|
dr⃗1dr⃗2 (3.19)

This is the energy functional of Thomas-Fermi theory of atoms. The method became

considered as an overly simplified model of little real significance for quantitative

predictions in atomic, molecular, or solid state physics because the accuracy for

atoms is not as high with this model as it is with other methods.

3.4 The Hohenberg-Kohn (HK) theorems

Density functional theory (DFT) is the most widely used many-body approach for

electronic structure calculations and has significantly impacted on modern science

and engineering. DFT is made possible by the existance of two ingeniously sim-

ple theorems put forward and proven by Hohenberg and Kohn in 1964 [81]. The

Hohenberg-Kohn theorems which have become a basic tool for the study of electronic

structure of matter. Basically, any system that involves electron.

3.4.1 The HK theorem I

For any system of interacting particles in an external potential Vext(r⃗), the density

is uniquely determined (in other words, the external potential is a unique functional

of the density).

Proof of the HK theorem I

Assume that there exist two potentials Vext(r⃗) and V
′
ext(r⃗) differing by more than a

constant and giving rise to the same ground state density, n0(r⃗). Obviously, Vext(r⃗)

and V ′
ext(r⃗) belong to distinct Hamiltonians Ĥ and Ĥ ′, which give rise to distinct

wave functions ψ and ψ′. Because of the variational principle, no wave function can

21



Density Functional Theory

give an energy that is less than the energy of ψ for Ĥ. That is,

E0 < ⟨ψ′|Ĥ|ψ′⟩

< ⟨ψ′|Ĥ ′|ψ′⟩+ ⟨ψ′|Ĥ − Ĥ ′|ψ′⟩

< E ′
0 +

∫
n0(r⃗)[Vext(r⃗)− V ′

ext(r⃗)]dr⃗

(3.20)

Similarly,

E ′
0 < ⟨ψ|Ĥ|ψ⟩

< ⟨ψ|Ĥ|ψ⟩+ ⟨ψ|Ĥ ′ − Ĥ|ψ⟩

< E0 +

∫
n0(r⃗)[V

′
ext(r⃗)− Vext(r⃗)]dr⃗.

(3.21)

Adding equations (2.20) and (2.21) lead to the contradiction,

E0 + E ′
0 < E0 + E ′

0 (3.22)

which is clearly a contradiction. Thus, the theorem has been proven by reduction

absurdum.

3.4.2 The HK theorem II

A universal functional F [n(r⃗)] for the energy E[ψ′] can be defined in terms of the

density, The exact ground state is the global minimum value of this functional.

Proof of the HK theorem II

Since the external potential is uniquely determined by the density and since the

potential in turn uniquely (except in degenerate situations) determines the ground

state wavefunction, all the other observables of the system such as kinetic energy are

uniquely determined. Then one may write the energy as a functional of the density.

The universal functional F [n(r⃗)] can be written as,

F [n(r⃗)] ≡ T [n(r⃗)] + Eint[n(r⃗)] (3.23)

where T [n(r⃗)] is the kinetic energy and Eint[n(r⃗)] is the interaction energy of the
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particles. According to variational principle, for any wavefunction ψ′, the energy

functional E[ψ′]:

E[ψ′] ≡ ⟨ψ′|T̂ + V̂int + V̂ext|ψ′⟩ (3.24)

has its global minimum value only when ψ′ is the ground state wavefunction ψ0

with the constraint that the total number of the particle is conserved. According

to HK theorem I, ψ′ must correspond to a ground state with particle density n′(r⃗)

and external potential V ′
ext(r⃗), then E[ψ′] is a functional of n′(r⃗). According to

variational principle:

E[ψ′] ≡ ⟨ψ′|T̂ + V̂int + V̂ext|ψ′⟩

= E[n′(r⃗)]

=

∫
n′(r⃗)V ′

ext(r⃗)dr⃗ + F [n′(r⃗)]

> E[ψ0]

=

∫
n0(r⃗)Vext(r⃗)dr⃗ + F [n0(r⃗)]

= E[n0(r⃗)]

(3.25)

Thus the energy functional E[ψ′] ≡
∫
n(r⃗)Vext(r⃗)dr⃗ + F [n(r⃗)] evaluated for the

correct ground state density n0(r⃗) is indeed lower than the value of this functional

for any other density n(r⃗). Therefore by minimizing the total energy functional of

the system with respect to variations in the density n(r⃗), one would find the exact

ground state density and energy [82]. This functional only determines ground state

properties, it doesn’t provide any guidance concerning excited states.

3.5 Kohn-Sham (KS) equation

An inventive indirect method of monoelectronic equation for the kinetic-energy

functional T [n(r⃗)] was developed by Kohn and Sham in 1965 as Kohn-Sham (KS)

method [83]. Kohn and Sham proposed introducing orbitals into the problem in such

a way that the kinetic energy can be computed simply to good accuracy, leaving a

small residual correction that is handled separately. It is convenient to begin with
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the exact formula for the ground-state kinetic energy,

T =
N∑
i

ai⟨ψi| −
1

2
∇2|ψi⟩ (3.26)

where, ψi and ai respectively, natural spin orbitals and their occupation numbers.

We are assured from the Hohenberg-Kohn theory that this T is a functional of the

total electron density.

n(r⃗) =
N∑
i

ai|ψi(r⃗)|2 (3.27)

Kohn and Sham showed that one can built a theory using simpler formulas, namely,

Ts[n] =
N∑
i

⟨ψi| −
1

2
∇2|ψi⟩ (3.28)

and

n(r⃗) =
N∑
i

|ψi(r⃗)|2 (3.29)

This representation of kinetic energy and density holds true for the determinantal

wave function that exactly describes N non-interacting electrons. In analogy with

the Hohenberg-Kohn defination of the universal functional FHK [n], Kohn and Sham

invoked a corresponding non-interacting reference system, with the Hamiltonian,

Ĥs =
N∑
i

(
1

2
∇2
i ) +

N∑
i

νs(r⃗) (3.30)

in which there are no electron-electron repulsion terms and for which the ground

state electron energy is exactly n. For this system, there will be an exact determi-

nantal ground-state wave function,

ψs =
1√
N !
det[ψ1ψ2 . . . ψN ] (3.31)

where ψi are the N lowest eigenstates of the one-electron Hamiltonian ĥs:

ĥsψi = [−1

2
∇2 + νs(r⃗)]ψi = ϵmeψi (3.32)
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The kinetic energy is Ts(n) given by equation (3.28).

Ts[n] = ⟨ψs|
N∑
i

(−1

2
∇2
i )|ψi⟩ =

N∑
i=1

⟨ψi| −
1

2
∇2|ψi⟩ (3.33)

The quantity Ts[n], although uniquely defined for any density, is still not the exact

kinetic energy functional. Kohn-Sham set up a problem of interest in such a way

that Ts[n] is it’s kinetic energy component. To produce the desired separation out

of Ts[n] as the kinetic energy component, we write the equation as

F [n] = Ts[n] + J [n] + Exc[n]. (3.34)

where,

Exc[n] = T [n]− Ts[n] + Vee[n]− J [n] (3.35)

Here the quantity Exc[n] is called exchange-correlation energy. It contains the dif-

ference between T and Ts and non-classical part of Vee[n]. The Euler equation

becomes,

µ = νeff (r⃗) +
δTs[n]

δn(r⃗)
(3.36)

where KS effective potential is defined by,

νeff (r⃗) = ν(r⃗) +
δJ [n]

δn(r⃗)
+
δExc[n]

δn(r⃗)

= ν(r⃗) +

∫
n(r⃗′)

|r⃗ − r⃗′|
dr′ + νxc(r⃗)

(3.37)

with the exchange-correlation potential

νxc(r⃗) =
δExc[n]

δn(r⃗)
(3.38)

For a system of non-interacting electrons moving in the external potential νs(r⃗) =

νeff (r⃗). Therefore, for a given νeff (r⃗), one obtains the n(r⃗) that satisfies equation

(3.38) simply by solving the N -one electron equations,

[−1

2
∇2 + νeff (r⃗)]ψi = ϵmeψi (3.39)
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where ϵme is the eigenvalue of monoelectron equation and setting

n(r⃗) =
N∑
i

|ψi(r⃗)|2 (3.40)

Equations (3.37) and (3.40) are celebrated Kohn-Sham equations.

The Kohn-Sham equations derived above that are summerized in the flow chart in

Figure: 3.1. They are a set of Schrödinger like independent particle equations which

must be solved subject to the condition that the effective potential νeff and the

density n(r⃗) are consistent. After solving Kohn-Sham equations, we will have a set

of single electron wave functions. These wave functions can be used to calculate

the new electron density. As an input, the new electron density is fed into the next

cycle. Finally, after each iteration, compare the differences in calculated electron

densities. If the difference in electron density between consecutive iterations is less

than a suitably determined convergence threshold, the solution of the Kohn-Sham

equations is deemed self-consistent. The predicted electron density has now been

converted to the ground state electron density, which can be used to compute the

total energy of the system.

3.5.1 Solving Khon-Shan equation

In a condensed matter system the KS equation gives a way to obtain the exact

density and energy of the ground state. The process starts with an initial electron

density n(r), usually a superposition of atomic electron density, then the effective

KS potential νeff is calculated and the KS equation is solved with single-particle

eigenvalues and wave functions, a new electron density is then calculated from the

wave functions. This is usually done numerically through some self consistent iter-

ation as shown in above flowchart. Self-consistent condition can be the change of

total energy or electron density from the previous iteration or total force acting on

atoms is less than some chosen small quantity, or a combination of these individual

conditions. If the self-consistency is not achieved, the calculated electron density

will be mixed with electron density from previous iterations to get a new electron
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density. A new iteration will start with the new electron density. This process

continues until selfconsistency is reached. After the self-consistency is reached, var-

ious quantities can be calculated including total energy, forces, stress, eigenvalues,

electron density of states, band structure, etc..

Figure 3.1: Flowchart of self-consistency loop for solving Kohn-Sham equation

3.6 The exchange-correlation (XC) functional

The exchange-correlation functional is at the core of density functional theory (DFT)

that determines the accuracy of DFT in describing the interactions among elec-

trons/ions in solids and molecules [84]. The crucial quantity in the Kohn-Sham

approach is the exchange-correlation energy which is expressed as a functional of

the density Exc[n⃗]. The exchange-correlation potential for a homogeneous electron

gas (HEG) at the electron density observed at position r⃗. This approximation uses

only the local density to define the approximate exchange-correlation functional,
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hence called local density approximation (LDA) and widely used.

ELDA
xc (r⃗) =

∫
n(r⃗ϵ)homxc n(r⃗)dr⃗

=

∫
[n(r⃗ϵ)homx n(r⃗) + n(r⃗ϵ)homc n(r⃗)]dr⃗

= ELDA
xc [n(r⃗)]

(3.41)

The LDA is very simple, corrections to the exchange-correlation energy due to the in-

homogeneities in the electronic density are ignored. Because of exchange-correlation

energy of inhomogeneous charge density can significantly different from HEG result.

This leads to development of various generalized-gradient approximation (GGA). In

the GGA approximation, the local electron density and local gradient in the elec-

tron density are included in the exchange and correlation energies. One example of

GGA functional used in DFT is the Perdew-Burke Ernzerhof (PBE) functional. It

is formulated as

EPBE
xc = ELDA

xc + EPBE
c . (3.42)

Where, EPBE
xc is the exchange correlation energy calculated using the PBE func-

tional. ELDA
xc is the exchange correlation energy calculated using LDA approxima-

tion and EPBE
c is the correlation energy term specific to the PBE functional.

The exchange correlation potential was solved by GGA functional that understi-

mates tha band gap value. Therefore, the modified Becke-Johnson exchange poten-

tial and LDA correlation by Trans and Blaha in 2009 (TB-mBJ) allows the calcula-

tion of band gaps with an accuracy similar to very expensive GW calculations.

3.7 Local Density Approximation (LDA)

The Khon Sham equation while exactly incorporating the kinetic energy Ts[n], still

leave the exchange correlational functional Exc[n] unsetteled. In Khon Sham equa-

tion let us introduce the local density approximation proposed by Khon and Sham.

The kinetic energy Ts[n] is regorously treated in the Kohn Sham schame, we can

use the uniform electron gas formula solely for the unknown part of the rest of the
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energy functional. Thus we introduce the local density approximation (LDA) for

exchange and correlation energy.

EPBE
xc [n] =

∫
n(r⃗)ϵxc(n)dr⃗ (3.43)

Where, ϵxc[n] indicates the exchange and correlation energy per particle of a uniform

electron gas of density n. The corresponding exchange correlation potential then

becomes,

V LDA
xc (r⃗) =

EPBE
xc [n]

δn(r⃗)

= ϵxc(n(r⃗)) + n(r⃗)
Exc[n]

δn(r⃗)

(3.44)

and the Khon Sham equations read, This self consistent solution defines the KS local

density approximation, which is the literature is usually simply called Local Density

Approximation (LDA) method. The function ϵxc[n] can be devided into exchange

and correation contributions,

ϵxc(n) = ϵx(n) + ϵc(n) (3.45)

The exchange part is already known given by the Dirac exchange energy functional.

ϵx(n) = −Cxn
1
3 (r⃗) (3.46)

where,

Cx =
3

4
(
3

π
)
1
3 (3.47)

3.8 Local Spin Density Approximation (LSDA)

The spin-density-functional theory is the necessary generalization for systems in the

presence of an external magnetic field. It is also exceedingly important for systems

in the absence of a magnetic field, because it allows one to build more physics into

the approximate exchange-correlation functional through its spin dependence. In

the presence of a magnetic field B(r⃗) that acts only on the spins of the electrons,
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the Hamiltonian of the system becomes,

H = −1

2

N∑
i

∇2
i +

N∑
i

V (r⃗) +
N∑
i<1

1

r⃗ij
+ 2βe

N∑
i

B(⃗r).S⃗i (3.48)

Where, βe =
eℏ
2mc

is the Bohr magneton and S⃗i is the electron angular momentum

vectorfor the itℏ electron. The added magnetic interaction is still a one-electron

operator, just like the nuclear potential V (r⃗). We can combine terms in the following

convenient way:

V̂ =
N∑
i

V (r⃗i) + 2βe

N∑
i

B(r⃗).S⃗i (3.49)

=

∫
v(r⃗)n̂(r⃗)dr⃗ −

∫
B(r⃗)m̂(r⃗)dr⃗ (3.50)

where n̂(r⃗) is the operator for electron density,

n̂(r⃗) =
N∑
i

δ(r⃗ − r⃗i) (3.51)

and and m̂(r⃗) is the operator for the electron magnetization density,

m̂(r⃗) = −2βe

N∑
i

Siδ(r⃗ − r⃗i) (3.52)

Both n̂(r⃗) and m̂(r⃗) are local operators. The expectation value of V̂ for the state

|ψ⟩ is given by,

⟨ψ|V̂ |ψ =

∫
v(r⃗)n(r⃗)dr⃗ −

∫
B(r⃗)m(r⃗)dr⃗ (3.53)

where the electron density is given by,

n(r⃗) = ⟨ψ|n̂(r⃗)|ψ⟩ (3.54)

and the magnetization density by,

m(r⃗) = ⟨ψ|m̂(r⃗)|ψ⟩ (3.55)
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We shall discuss only the simple case of z-direction b(r⃗). We then have,

⟨ψ|V̂ |ψ⟩ =
∫
v(r⃗)n(r⃗)dr⃗ −

∫
b(r⃗)m(r⃗)dr⃗ (3.56)

where,

m(r⃗) = −2βe⟨ψ|
N∑
i

Sz(i)δ(r⃗ − r⃗i)|ψ⟩

= βe[n
β(r⃗)− nα(r⃗)]

(3.57)

We obtain the spin-density-functional theory by breaking the minimum search for

the ground-state energy into two steps. Namely,

E0 = min
ψ

⟨ψ|T + Vee +
N∑
i

U(r⃗i) + 2βe

N∑
i

b(r⃗i).Sz(i)|ψ⟩ (3.58)

= min
nα,nβ

{ min
ψ→nα,nβ

⟨ψ|T + Vee⟩+
∫
[v(r⃗)n(r⃗)−

∫
b(r⃗)m(r⃗)]dr⃗} (3.59)

= min
nα,nβ

{F [nα, nβ] +
∫
[(V (r⃗)− βeb(r⃗))n

α(r⃗) + βeb(r⃗))n
β(r⃗)]dr⃗} (3.60)

where,

F [nα, nβ] = min
ψ→nα,nβ

⟨ψ|T + Vee|ψ⟩ (3.61)

This provides constrained-search formulation of the universal functional F [nα, nβ].

The functional F [nα, nβ] searches all ψ that yield the input nα(r⃗) and nβ(r⃗), then

F [nα, nβ] assumes the minimum of ⟨F + Vee⟩. The last equality of (8.1.10) is the

basis of the spin-density-functional theory: nα and nβ are all that are needed to

describe the ground state of the many-electron system in the presence of a magnetic

field b(r⃗). However, F [nα, nβ] is unknown, and approximation is necessary for the

theory to be implemented.

The Kohn-Sham method can now be introduced to rigorously handle the kinetic

energy contribution to F [nα, nβ],

F [nα, nβ] = Ts[n
α, nβ] + J [nα + nβ] + Exc[n

α, nβ] (3.62)

where, Ts[n
α, nβ] is the Kohn-Sham kinetic-energy functional corresponding to a
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system of non-interacting electrons with densities nα and nβ and Exc[n
α, nβ] is the

exchange correlation energy functional. A constrained search definition of Ts can

also be given,

Ts[n
α, nβ] = min

∑
iα

niα

∫
dr⃗ϕ∗

iα(r⃗)(
1

2
∇2)ϕiαr⃗ (3.63)

where the minimization is over the set of niα and ϕiα, with constraints,

∑
i

niα|ϕiα(r⃗)|2 = nα(r⃗) (3.64)

∑
i

niβ|ϕiβ(r⃗)|2 = nβ(r⃗) (3.65)

We may express the energy (3.55) as a functional of the orbitals ϕiα,

E[nα, nβ] =
∑
iα

niα

∫
dr⃗ϕ∗

iα(r⃗)(−
1

2
∇2)ϕiαr⃗ + J [nα + nβ] + Exc[n

α, nβ]

+

∫
[(V (r⃗) + βeb(r⃗))n

α(r⃗) + (V (r⃗)− βeb(r⃗))n
β(r⃗)]d(r⃗)

(3.66)

The variational search for the minimum of E[nα, nβ] can then be carried out through

orbitals, subject to normalization constraints,

∫
ϕ∗
iα(r⃗)ϕiα(r⃗)dr⃗ = 1 (3.67)

The resulting Kohn-Sham equations are,

ĥαeffϕiα(r⃗) = [−1

2
∇2 + V α

eff ]ϕiα(r⃗) = ϵiαϕiα(r⃗) (3.68)

and

ĥβeffϕjβ(r⃗) = [−1

2
∇2 + V β

eff ]ϕjβ(r⃗) = ϵjβϕjβ(r⃗) (3.69)

where the spin-dependent effective potentials are,

vαeff (r⃗) = v(r⃗) +

∫
n(r⃗)

|r⃗ − r⃗′ |dr⃗
+
δExc[n

α, nβ]

δnα(r⃗)
+ βeb(r⃗) (3.70)
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vβeff (r⃗) = v(r⃗) +

∫
n(r⃗)

|r⃗ − r⃗′ |dr⃗
+
δExc[n

α, nβ]

δnβ(r⃗)
+ βeb(r⃗) (3.71)

In equations (3.65) and (3.66), the number of electrons with α spin and β spin,

Nα =

∫
nα(r⃗)dr⃗ (3.72)

and

Nβ =

∫
nβ(r⃗)dr⃗ (3.73)

need also to be varried to achieve minimum total energy under the constraint,

N = Nα +Nβ (3.74)

With the spin-polarized Kohn-Sham equations, the kinetic energy is handled exactly

and only the exchange-correlation energy remains to be determined. The exchange-

correlation contribution can be separated into exchange and correlation pieces,

Exc[n
α, nβ] = Ex[n

α, nβ] + Ec[n
α, nβ] (3.75)

where the exchange part is defined as,

Ex[n
α, nβ] = −1

2

∫ ∫
1

r⃗12
{|nα,α1 (r⃗1, r⃗2)|2 + |nβ,β1 (r⃗1, r⃗2)|2}dr⃗1r⃗2 (3.76)

with

nα,α1 (r⃗1, r⃗2) =
∑
i

niαϕiα(r⃗1)ϕ
∗
iα(r⃗2) (3.77)

nβ,β1 (r⃗1, r⃗2) =
∑
i

niβϕiβ(r⃗1)ϕ
∗
iβ(r⃗2) (3.78)

The niα and ϕiα are those giving the Kohn-Sham kinetic energy, they are determined

by pα and pβ.

Ex[n
α, nβ] =

1

2
Ex[n

α, nα] +
1

2
Ex[n

β, nβ] (3.79)

=
1

2
E0
x[2n

α] +
1

2
E0
x[2n

β] (3.80)
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where,

E0
x[n] = Ex[

1

2
n,

1

2
n] (3.81)

The Dirac local-density approximation (LDA) for exchange is for the spin-compensated

case. Thus from above equations, we obtain the local spin-density approximation

(LSDA) for the exchange energy functional,

ELSDA
x [nα, nβ] = 2

1
3Cx

∫
[(nα)

4
3 + (nβ)

4
3 ]dr⃗ (3.82)

3.9 Generalized Gradient Approximation (GGA)

The LDA neglects the inhomogeneties of the real charge density which could be

very different from the HEG. The XC energy of inhomogeneous charge density can

be significantly different from the HEG result. This leads to be the development of

verious generalized-gradient approximations (GGA) which include density gradient

corrections and higher spatial derivatives of the electron density and give better

result than LDA in many cases. Three most widely used GGA’s are the from

proposed by Becke [85], Perdew et al. [86], Burke and Enzerhof [87]. The definition

of the XC energy functional of GGA is the generalized form in the equation of LSDA

to include corrections ,

ELSDA
XC [n↓(r), n↑(r)] =

∫
n(r)ϵhomXC [n↓(r), n↑(r)]dr (3.83)

Where XC energy density ϵhomXC (n(r)) is a function of the density alone and is

composed into exchange energy density ϵhomXC (n(r)) and correlation energy density

ϵhomC (n(r)) . So thet the XC energy functional is decomposed into exchange energy

function ELDA
XC (n(r)) linearly. From density gradient ∇(r⃗) as,

EGGA
XC [n↓(r), n↑(r)] =

∫
n(r)ϵhomXC [n↓(r), n↑(r), |∇ ↑ (r)|, |∇ ↓ (r)|, ...]dr

=

∫
n(r)ϵhomX n(r)FXC [n↓(r), n↑(r), |∇ ↑ (r)|, |∇ ↓ (r)|, ...]dr

(3.84)
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Where FXC is dimensionless and ϵhomXC n(r) is the exchange energy density of the un-

polarized HEG. FXC can be decomposed linearly into exchange contribution FXC

= FX + FC . Generally GGA works better than LDA, in pridicting binding en-

ergy of molecules and bond length, crystal lattice constants, especially the system

where charge density varried rapidly. In case of ionic crystall, GGA overcorrects

LDA results where the lattice constants of LDA fit well than GGA. But in case of

transition metal oxides and rare-earth element, both LDA and GGA perform badly.

This drawback leads to approximations beyond LDA and GGA.

3.10 LDA+U method

Strongly correlated system usually contain transition metal or rare-earth metal ions

with partially filled d or f shells. Because of the orbital-independent potentials in

LSDA and GGA, they cannot properly describe such systems. The total energy in

LSDA+U [88] method is given by,

ELDA+U
tot [ρσ(r), nσ] = ELSDA[ρσ(r)] + EU [nσ]− Edc[n(r)] (3.85)

where, σ = spin indexes ρ(r) = electron density for spin- electrons n = density

matrix of f or d electron for spin-σ electrons ELSDA[ρσ(r)] = standard LSDA energy

functional EU [n(r)] = electron-electron coulomb interaction energy. The last term

is double counting term which remove the average LDA energy contribution of d or

f electrons from the LDA energy

Edc[n(r)] =
1

2
UN(N − 1)− 1

2
J [N↑(N↑ − 1) +N↓(N↓ − 1)] (3.86)

where, N = N↑ +N↓. U and J are coulomb and exchange parameters. If exchange

and non sphericity is neglected then,

ELDA+U
tot = ELDA +

1

2
U
∑
i ̸=1

ninj −
1

2
UN(N − 1) (3.87)
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The orbital energies ϵi are derivative of above equation with respect to orbital oc-

cupations ni:

ϵi =
∂E

∂ni
= ϵLDA + U(

1

2
− ni) (3.88)

For ni = 1, LDA orbital energiesare shifted by −U
2
and by U

2
and by for unoccupied

orbitals( ni = 0), resulting the upper and lower Hubbard bands, which opens a gap

at the Fermi energy in transition metal oxides. In case of double counting term, it

has two different tretement: AMF and FLL. The former is most suitable for small U

system [89] and the letter for large U system [90]. The energies for double counting

is given by [91],

EAMF
dc =

1

2
UN2 − U + 2lJ

2l = 1

1

2

∑
σ

N2
σ (3.89)

and

EAMF
dc =

1

2
UN(N − 1)− 1

2
J
∑
σ

Nσ(Nσ−1) (3.90)

where, N
2(2l+1)

= average occupation of the correlated orbitals,

Nσ

2l+1
= average occupation of a single spin of the correlated orbital.
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Chapter 4

Results and Discussion

4.1 Computational frameworks

The structural, mechanical, optoelectronic, and thermoelectric properties of dou-

ble perovskites K2AgXI6 (X = Sb, Bi) are studied using the Full Potential Linear

Aaugmented Plane Wave (FP-LAPW) method, based on Density Functional Theory

(DFT) and incorporated in the WIEN2k code [92]. A reliable analytical parame-

ter, the Goldschmidt tolerance factor, was used to analyze the stable structures of

the perovskite materials. The Perdew-Burke-Ernzerhof and Generalized Gradient

Approximation (PBE-GGA) functional was utilized to compute structural charac-

teristics, while the modified Becke and Johnson (mBJ) potential functional was

employed to compute the optoelectronic and thermal properties of the compounds

[87]. WIEN2k is a widely recognized and efficient software package for performing

DFT calculations, offering robust capabilities for studying the electronic, optical,

and mechanical properties of materials. Additionally, we have effectively employed

the Trans and Blaha modified Becke and Johnson potential (TB-mBJ), leading to a

notable improvement in bandgap accuracy [93]. The BoltzTraP code [94] was used

to investigate the thermoelectric characteristics of the materials. We set RMT×Kmax

= 8, where RMT is the smallest muffin-tin radius and Kmax is the largest recipro-
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cal lattice vector used in the expansion of the plane wave functions. The largest

expansion Fourier of charge density was up to Gmax = 24, and angular momentum

vector lmax = 10. Moreover, the number of k-point is selected to 4000 in Brillouin

zone. When the total energy and charge of the system is stable within the energy of

0.00001 Ry and 0.001 e respectively, then self-consistent equation is converged. For

mechanical properties, Charpin method is applied while Kramer-Krong model was

used to calculate the optical characteristics [95].

4.2 Structural properties

The structural stability of materials is extremely valuable in determining their phys-

ical or chemical performance. We calculated the structures of the alkali metal-based

double perovskites K2AgXI6 (X = Sb, Bi), which belong to the space group Fm3̄m

(space group no: 225). These structures were optimized to eliminate strain forces

among the atoms, ensuring accurate structural parameters as illustrated in Fig-

ure 4.1, where K is a alkali cation, Ag is a monovalent-transition cation, Sb/Bi

is a trivalent-transition cation and I is a halide ion. Here, sky blue, violet, green

and dark red colors are presenting the identity of atoms with K, Sb/Bi, Ag and I.

K2AgSbI6 and K2AgBiI6 compounds have fourteen octahedras with (Ag Sb/BiI6)

which are located at the corners and interior of the cubic structures. In the unit

cell structure, K atoms have a face-centered position with an 8c Wyckoff site and

fractional coordinates (0.25, 0.25, 0.25), the Sb/Bi atoms have a body-centered po-

sition with a 4b Wyckoff site and fractional coordinates (0.5, 0.5, 0.5), Ag atoms are

located in the corner positions with a 4a Wyckoff site and fractional coordinates (0,

0, 0) and I atoms have face-centered positions with a 24e Wyckoff site and fractional

coordinates (0.24808, 0, 0).

The stability of our compound is demonstrate with tolerance factor (τ) as well as

octahedral factor (µ). And these components can be represents by the following

equations [96,97]:
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K

Ag

Sb/Bi

I

Figure 4.1: Crystal structure of cubic double perovskites K2AgXI6 (X = Sb, Bi) at 0

GPa pressure.

τ =
ra + ro√

2( rb+rx
2

) + ro
(4.1)

µ =
rb + rx
2ro

(4.2)

Here, ra, rb, rx and ro represents the ionic radius of K, Ag, Sb/Bi and I components

of double perovskite. For a stable double perovskite, the value of tolerance factor is

between 0.81 to 1, while the value of octahedral factor is between 0.42 to 0.75 [97,

98]. Furthermore, research has demonstrated that materials exhibiting a tolerance

factor ranging from 0.89 to 1.00 indicate a cubic structure [99]. For the material

K2AgXI6 (X = Sb, Bi) double perovskites, the ionic radius of K, Ag, Sb, Bi, and I

is used 1.33 Å, 1.15 Å, 0.76 Å, 1.03 Å and 2.20 Å respectively. The values of the

tolerance factor for K2AgSbI6 and K2AgBiI6 have been determined to be 0.99 and

0.94 respectively. The values of the octahedral factor for K2AgSbI6 and K2AgBiI6

have been determined to be 0.434 and 0.495 respectively. The value ensures that the

material exhibiting the form of cubic structure having the space group of Fm3̄m,

which corresponds to space group number 225.
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Figure 4.2: Energy versus unit cell volume curve of cubic double perovskite (a)K2AgSbI6
and (b) K2AgBiI6 at 0 GPa pressure.

To determine the most stable structure with the system’s ground state energy, a

volume optimization computation has been carried out. The volume optimization

is provided with WIEN2k package that determines the minimum energy possessed

by a system by plotting volume vs energy graph which has been shown in Figure

4.2. By volume optimization, the lattice constant has been found to be 12.03 Å for

K2AgSbI6 and 12.18 Å for K2AgBiI6. In the reported paper, the authors found the

lattice constants to be 12.01 Å for K2AgSbI6 and 12.11 Å for K2AgBiI6. In order

to determine the optimized ground states of the materials being studied, the energy

versus volume of a unit cell of the crystals was calculated and also absorbed that the

most optimized material is K2AgBiI6 because its ground state energy is less as com-

pared to the K2AgSbI6. Furthermore, in the reported paper, the formation energy of
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K2AgSbI6 and K2AgBiI6 are given -7.35 eV and -7.72 eV which exhibits the confir-

mation of structure stability. In the basis of formation energy K2AgBiI6 compound

is more stable as compared to the K2AgSbI6 compound. The lattice constants are

calculated by utilizing the PBE-GGA functional. The optimized crystal structure

and the variation of optimization energy with unit cell volumes for K2AgXI6 (X =

Sb, Bi) are represented in Figure 4.1 and Figure 4.2.

4.3 Electronic Properties

The electronic properties of a material are related to the manner in which elec-

trons behave within it. To explore potential practical applications of the studied

compounds, it is essential to investigate their band structure and density of states.

Understanding electronic band structures and density of states is crucial for com-

prehending the physical properties of any material. Partial density of states is

important to know the different angular momentum component contribution. It

provides information to identify the nature of orbitals whether the states are s-like,

p-like, d-like or f -like. The electronic band structure and density of states under

various pressure are calculated and discussed in this section.

4.3.1 Band Structure

The configuration of energy levels, or bands, occupied by electrons in a material is

called band structure. The electrons in a crystalline material experience a periodic

potential, which causes the electrons’ energy levels to divide into discrete levels

with small spacings when the atoms combine to form a crystal. The permitted

energy levels in a solid create bands of states that are isolated from one another

by spaces where there are no energy states. The energy scale where no electron

state can remain is referred as the band gap. Other names for it are “Energy gap”

and “Fobidden gap”. The electronic band structure is necessary to understand the

phyical properties of crystalline solids which describe optical as well as transport

properties.
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Figure 4.3: The band structure of K2AgSbI6 and K2AgBiI6 at 0 GPa pressure.

The calculated band structure plotted along with high symmetry directions in the

first Brillouin zone is presented in Figure 4.3. The ability to classify materials

such as metals, semimetals, insulator, and semiconductor requires an understanding

of electronic band structure. From Figure 4.3, we can see that,the valance band

maxima lie at W or X symmetry directions, while conduction band minima lie at

L symmetry direction in the first Brillouin zone. Thus from band structures it

is evident that the K2AgXI6 (X = Sb, Bi) double perovskite materials represent

indirect band gap semiconductor because the top of valance bands and the bottom

of conductions band are located in different direction in first Brillouin zone. The

calculated band gap for K2AgSbI6 is 0.97 eV, and for K2AgBiI6, it is 1.599 eV at

ambient pressure using the mBJ potential. Due to the higher effective mass of holes

compared to electrons, there are more states at the valence band (VB) edge, which is

significantly closer to the Fermi level than the conduction band (CB). Consequently,

the double perovskite under investigation appears to exhibit p-type characteristics

in both systems.

The effect of hydrostatic pressure on the electronic properties of these materials

has been investigated under hydrostatic pressure ranging from 0-20 GPa for the

K2AgSbI6 compound and 0-50 GPa for the K2AgBiI6 compound. Understanding
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Figure 4.4: The band structure of K2AgSbI6 at 0 GPa, 5 GPa, 10 GPa, 15 GPa and 20

GPa pressure.

the impact of pressure on electronic properties is crucial, as it provides valuable

insights into surface characteristics. We performed band gap calculations under

various pressures to study how our compounds respond to pressure changes. Table

4.1 and Table 4.2 display the band gap variations under different pressures, showing

a decrease in lattice constant as pressure increases. The calculated band structures

and high symmetry directions of the Brillouin zone (BZ) under different pressures are

presented in Figure 4.4, Figure 4.5 and Figure 4.6 respectively. The horizontal line at

0 eV denotes the Fermi level for all pressures. As seen in Figure 4.4, for the K2AgSbI6

compound at 0 GPa, there is an indirect band gap of 0.97 eV, as the valence band

maxima and conduction band minima are located in different directions in the first

Brillouin zone. When pressure is applied, the band gap significantly reduces due to
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Figure 4.5: The band structure of K2AgBiI6 at 0 GPa, 5 GPa, 10 GPa pressure.

Table 4.1: Variation of lattice constants and band gap of K2AgSbI6under pressure.

Pressures (GPa) lattice constants (Å) Band gap (eV)

0 12.03 0.97

5 11.38 0.59

10 11.03 0.29

15 10.80 0.05

20 10.63 0.00

the expansion of the energy bands. At 20 GPa, the band gap reduces to a value of

0 eV, indicating a semiconductor-to-metallic transition.

Similarly, from Figure 4.5 and Figure 4.6, for the K2AgBiI6 compound at 0 GPa,

the indirect band gap is 1.599 eV. After applying pressure of 50 GPa, the band gap

significantly reduces to a value of 0 eV, also indicating a semiconductor-to-metallic

transition. Accordingly, it can be said that as pressure increases, a growing number

of electrons shift from the valence to the conduction bands, enhancing conductivity

and other optoelectronic properties that are better suited for device applications in

both systems.

44



Results and Discussion

W L Γ X W K

-5

0

5

E
n

er
g

y
(e

V
)

E
F

20 GPa

0.599 eV

W L Γ X W K

-5

0

5

E
n
er

g
y
(e

V
)

E
F

30 GPa

0.306 eV

W L Γ X W K

-5

0

5

E
n
er

g
y
(e

V
)

E
F

40 GPa

0.077 eV

W L Γ X W K

-5

0

5

E
n

er
g

y
(e

V
)

E
F

50 GPa

0 eV

Figure 4.6: The band structure of K2AgBiI6 at 20 GPa, 30 GPa, 40 GPa and 50 GPa

pressure.

4.3.2 Density of states

The density of states (DOS) is a concept used in physics to describe the distribution

of energy levels within a system, typically a solid, though it can be applied to other

systems as well. It provides information about the number of states (such as elec-

tronic states or vibrational states) at each energy level within a given energy range.

To analyze the potential electronic transitions from the valence to the conduction

band and the hybridization among the constituent states, the total and partial den-

sity of states (DOS) of K2AgSbI6 at ambient pressure are calculated, as illustrated

in Figure 4.7. The total and partial DOS reveal the individual contributions of dif-

ferent atoms and states within the valence band (VB) and conduction band (CB),

which corresponds to the information depicted in the band structure.
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Table 4.2: Variation of lattice constants and band gap of K2AgBiI6under pressure.

Pressures (GPa) lattice constants (Å) Band gap (eV)

0 12.18 1.599

5 11.50 1.260

10 11.16 0.994

20 10.75 0.599

30 10.49 0.306

40 10.31 0.077

50 10.16 0.000

Figure 4.7 (a) represent the total density of states for K2AgSbI6, the contribution

of elements mainly lies below the fermi level compared to above fermi level. Figure

4.7 (b,c,d,e) illustrates the partial density of states of K2AgSbI6 which are plotted,

see the role of sublevels in the hybridization. The electronic configuration of in-

dividual atom K, Ag, Sb, Bi, and I are [Ar] 4s1 , [Kr] 4d10 5s1 , [Kr] 4d10 5s2 5p3 ,

[Xe] 4f14 5d10 6s2 6p3 , and [Kr] 4d10 5s2 5p2 respectively. Only the valence electrons

are responsibole for hybridization and inter-band transitions. In total DOS from

Figure 4.7, the valence band near the fermi level mostly originated by I-5p states

with a small contribution Ag-4d states. Whereas the conduction band minimum is

mainly originated by I-5p states and Sb-5p states. In K2AgSbI6 systems, the I atom

contribution in the density of states is higher than other atoms.

The influence of varying pressures on electronic properties has been extensively

analyzed using the mBJ potential. Understanding how pressure affects electronic

properties is crucial as it provides insights into surface characteristics. This analysis

involved studying the impact of pressure by decreasing the lattice parameter from

its equilibrium value.

We performed band gap calculations under different pressures to examine how our

compound responds to these changes. The variation of the band gap under different

pressures is shown in Table 4.1. We have investigated the changes in the DOS

for K2AgSbI6 double perovskite under hydrostatic pressures. Figure 4.8 shows the
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Figure 4.7: (a) Total density of states of K2AgSbI6, (b) Partial density of states of K, (c)

Partial dendity of states of Ag, (d) Partial dendity of states of Sb and (e) Partial dendity

of states of I at ambient pressure.

computed total and partial density of states of K2AgSbI6 double perovskite materials

under various pressures. It has been observed that the DOS at the Fermi level

changes as the pressure changes. We can relate this to the band gap, as the band

gap changes with pressure. Consequently, the energy distance between the valence

band (VB) and conduction band (CB) from the Fermi level also changes. Similar to

its behavior at 0 GPa, the K2AgSbI6 system demonstrates p-type semiconducting

nature at all applied pressures. The uppermost valence electronic states in the range

of -2 to -4 eV change to 1 to 3 eV in the conduction band, showing a significant

pressure influence on TDOS for this system.
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Figure 4.8: (a) Total density of states of K2AgSbI6, (b) Partial density of states of K, (c)

Partial dendity of states of Ag, (d) Partial dendity of states of Sb and (e) Partial dendity

of states of I under different hydrostatic pressure.

Only the valence electrons participate in inter-band transitions and hybridization.

It is evident from the partial density plot of K, Ag, Sb and I that the valence

band for all pressure near the fermi level mostly originated by I-5p states with

a small contribution of Ag-4d states. Whereas the conduction band minimum is

mainly originated by I-5p and Sb-5p states. All sharp peaks subjected to pressure

progressively move downward. This peak shifting results in a reduction of the band

gap under pressure. Similarly, we have calculated the density of states (DOS) for

another system, K2AgBiI6, at ambient pressure and under hydrostatic pressure.
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Figure 4.9: (a) Total density of states of K2AgBiI6, (b) Partial density of states of K, (c)

Partial dendity of states of Ag, (d) Partial dendity of states of Bi and (e) Partial dendity

of states of I at ambient pressure.

Figure 4.9 shows the computed total and partial density of states of the K2AgBiI6

double perovskite material at ambient pressure. From the total DOS in Figure 4.9,

the valence band near the Fermi level is mostly originated from I-5p states with a

small contribution from Ag-4d states. In contrast, the conduction band minimum

is mainly originated from I-5p states and Bi-5p states. Thus, at ambient pressure

for the system K2AgBiI6, the I-5p states dominate over other atoms in both the

valence and conduction bands. We have investigated the changes in the DOS for

K2AgBiI6 double perovskite under hydrostatic pressures. The variation of the band

gap for K2AgBiI6 under different pressures is shown in Table 4.2. Figure 4.10 shows

49



Results and Discussion

 0

 10

 20

 30

 40

 50

-4 -3 -2 -1  0  1  2  3  4  5

T
D

O
S

(S
ta

te
s/

eV
)

Energy (eV)

0 GPa
5 GPa

10 GPa
20 GPa
30 GPa
40 GPa
50 GPa

(a) 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

-4 -3 -2 -1  0  1  2  3  4  5

(b)

(K-3p)

P
D

O
S

 (
S

ta
te

s/
eV

)

Energy (eV)

  0 GPa
  5 GPa

 10 GPa
 20 GPa
 30 GPa
 40 GPa
 50 GPa

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-4 -3 -2 -1  0  1  2  3  4

(c)

(Ag-4d)

P
D

O
S

 (
S

ta
te

s/
eV

)

Energy (eV)

  0 GPa
  5 GPa
 10 GPa
 20 GPa
 30 GPa
 40 GPa
 50 GPa

0.0

0.2

0.4

0.6

0.8

1.0

-4 -3 -2 -1  0  1  2  3  4

(d)

(Bi-5p)

P
D

O
S

 (
S

ta
te

s/
eV

)

Energy (eV)

  0 GPa
  5 GPa
 10 GPa
 20 GPa
 30 GPa
 40 GPa
 50 GPa

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-4 -3 -2 -1  0  1  2  3  4

(e)

(I-5p)

P
D

O
S

 (
S

ta
te

s/
eV

)

Energy (eV)

  0 GPa
  5 GPa

 10 GPa
 20 GPa
 30 GPa
 40 GPa
 50 GPa

Figure 4.10: (a) Total density of states of K2AgBiI6, (b) Partial density of states of

K, (c) Partial dendity of states of Ag, (d) Partial dendity of states of Bi and (e) Partial

dendity of states of I under hydrostatic pressure.

the computed total and partial density of states of K2AgBiI6 double perovskite

materials under various pressures. It has been observed that the DOS at the Fermi

level changes as the pressure changes. The uppermost valence electronic states in

the range of -2 to -4 eV change to 1 to 3 eV in the conduction band, showing a

significant pressure influence on TDOS for this system. From the partial density

plot of K, Ag, Bi and I that the valence band for all pressure near the fermi level

mostly originated by I-5p states with a small contribution of Ag-4d states. Whereas

the conduction band minimum is mainly originated by I-5p and Bi-5p states.
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In summery, the physical properties of a compound are determined solely by the

states that make up the valence band maxima and conduction band minima. Thus,

it can be concluded that in our computed K2AgXI6 (X = Sb, Bi) systems, the

potential indirect transition occurs from I-5p in the valence band to the conduc-

tion band. Consequently, the p-p hybridizations are responsible for excitation and

recombination in our system.

4.4 Optical properties

The optical properties of the studied double perovskites (DPs) illustrate their be-

havior against light energy, highlighting their importance for solar cell applications.

The optical characteristics of the considered K2AgXI6 (X = Sb, Bi) include the

dielectric function, absorption coefficient, optical conductivity, reflectivity, and re-

fractive index. These optical characteristics are crucial for their potential use in

infrared (IR), electronic, and optical applications. The interaction between the in-

cident electromagnetic frequency and the bound lattice constant (a0) electrons in

the valence band affects the optical response. This type of recombination is used

to evaluate the material’s potential for optoelectronic applications, as the bound

electrons absorb the incident energy and transition to the conduction band [100].

The impact of pressure on the optical properties of a material can lead to changes

in electronic transitions, alterations in lattice vibrations affecting phonon modes,

variations in density influencing the refractive index, and potential phase transitions.

To understand the nature of light-matter interactions in these systems for practical

applications, the optical properties of K2AgXI6 (X = Sb, Bi) under induced pressure

have been calculated. In this study, the optical properties (real and imaginary parts

of the dielectric function, absorption coefficient, optical conductivity, reflectivity,

and refractive index) of K2AgXI6 (X = Sb, Bi) are analyzed and discussed under

hydrostatic pressure.
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4.4.1 Dielectric function

We have calculated the real and imaginary imaginary dielectric function by the help

of Kramer-Kronig relation [101]. The dielectric function is dependent on frequency

of electron gas and can be written as ϵ(ω). The complex dielectric function written

as:

ϵ(ω) = ϵ1(ω) + iϵ2(ω). (4.3)

Where, ϵ1(ω) and ϵ2(ω) are represents real and imaginary parts of the dielectric

function. The real part describes the ability of the material to store energy in an

electromagnetic field, while the imaginary part describes the loss of energy due to

absorption or scattering by the material. The formula for calculating ϵ2(ω) with

cubic symmetry substance [102]:

ϵ(ω) =
8

2πω2

∑
nn′

∫
BZ

|Pnn′(k)|2 dSk
∇ωnn′(k)

(4.4)

And ϵ1(ω) can be found using Kramers–Kronig relation which is [103]:

ϵ(ω) = 1 +
2

π
P

∫ ∞

0

ω′ϵ2(ω
′)

ω′2 − ω2
dω′ (4.5)

In equation 4.5, ωnn′ is the energy difference between the two states, dSk is an energy

surface with constant value, and Pnn′ is the dipole matrix element between the initial

and final states. In 4.5, P denotes the principal part of the integral. The dielectric

function is a useful tool for calculating various optical properties, as we will explore

in the following sections.

The Figure 4.11 shows the variation of the real dielectric function ϵ1(ω) with energy

at ambient conditions and under hydrostatic pressure for K2AgSbI6 (X = Sb, Bi) sys-

tems. In the case of K2AgSbI6, the static dielectric constant ϵ1(0) is 5.8 and increases

with the energy of the incident electromagnetic wave. From the graph, it is evident

that ϵ1(ω) first increases with energy, reaches a peak value, and then decreases. The

negative ϵ1(ω) indicates that the typical semiconductor behavior changes to metallic
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Figure 4.11: The computed optical (a) Real dielectric function of K2AgSbI6 and (b)Real

dielectric function of K2AgBiI6 at ambient and under hydrostatic pressure pressure.

behavior in the studied halide double perovskite. For the K2AgSbI6 system, at 0

GPa, the static part of ϵ1(ω), expressed as ϵ1(0), is 5.8. It increases with energy and

reaches a maximum around 2 eV. Similarly, for the K2AgBiI6 system, at 0 GPa, the

static part of ϵ1(ω), expressed as ϵ1(0), is 4.9. It increases with energy and reaches

a maximum around 2.79 eV. Interestingly, the decreasing band gap due to applied

pressure shifts this maximum to higher energy for both systems, as shown in Fig-

ure 4.11. This illustrates the tunable transparency for visible radiation, suggesting

potential optical applications.

The variation of the imaginary dielectric function ϵ2(ω) plotted against the energy

range of 0-10 eV is shown in Figure 4.12 at ambient conditions and under induced

pressure. For both systems K2AgXI6 (X = Sb, Bi), ϵ2(ω) shows light absorption
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Figure 4.12: The computed optical (a) Imaginary dielectric function of K2AgSbI6 and

(b)Real dielectric function of K2AgBiI6 at ambient and under hydrostatic pressure.

when light of a suitable frequency falls on it. The threshold values for light absorp-

tion are proportional to the optical band gaps, and after these threshold energies,

light absorption starts. These threshold values are 1.8 eV as calculated from ϵ2(ω)

for K2AgSbI6 and 2.2 eV for K2AgBiI6.

The imaginary dielectric constant ϵ2(ω) exhibits positive values for all energies, and

overall higher energy shifts occur with increasing external pressure. In Figure 4.12,

ϵ2(ω) shows maximum values in the visible region for both systems with increasing

pressure. Therefore, K2AgXI6 (X = Sb, Bi) is suitable for solar cell applications.
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4.4.2 Absorption coefficient

The ”absorption coefficient” is defined as the percentage of radiation absorption per

unit distance through a material to the amount of radiation that hits the medium. It

measures the extent to which a substance absorbs electromagnetic radiation, includ-

ing light. The absorption coefficient depends on a number of things, like material’s

composition, structure, thickness, along with frequency or wavelength of the ra-

diation that hits it. In general, materials with closely bound electrons or greater

thickness will absorb radiation more efficiently than those with less tightly bound

electrons or more dispersed electrons. The absorption coefficient can be represented

by the dielectric constant using the equation [104]:

α(ω) =

√
2ω

c
[(ϵ1(ω)

2 + ϵ2(ω)
2)

1
2 − ϵ(ω)2]

1
2 (4.6)

The absorption coefficient α(ω) is a significant physical property that defines a mate-

rial’s ability to absorb and reduce the intensity of electromagnetic radiation. When

a substance is illuminated, both transmission and surface reflection are observable.

The decrease in light intensity as it travels through the medium indicates the ab-

sorption coefficients. The absorption coefficient α(ω) quantifies the light energy

absorbed by the semiconductor. It is crucial to note the sharp absorption edges

when the incident energy surpasses the bandgap, as these edges are essential for

determining the bandgap. Both α(ω) and ϵ2(ω) represent the absorption of light.

In Figure 4.13, we can see the variation of the absorption coefficient with energy

for K2AgXI6 (X = Sb, Bi) double perovskite materials at ambient and under in-

duced pressure. The range of photon energies for visible light is 1.65 eV to 3.26 eV.

As the incident energy increases, the absorption coefficient increases in the visible

region, with much larger absorption coefficients observed in the ultraviolet (UV)

region. When pressure increases in the early UV region, the absorption coefficient

decreases, but after 6 eV, it increases as the photon energy continues to rise for

both systems. For both systems, the absorption significantly increases in the 8-10

eV region compared to 0 GPa. Our compounds show that the absorption coeffi-

cient increases under applied hydrostatic pressure, indicating that both systems can
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Figure 4.13: The computed optical (a) Absorption coefficient of K2AgSbI6 and (b)

Absorption coefficient of K2AgBiI6 at ambient and under hydrostatic pressure.

be potential absorbers in the ultraviolet region. The diagrams of the absorption

coefficient under various pressures can be seen in Figure 4.13.

4.4.3 Optical conductivity

Optical conductivity is a property of a material that describes the relationship be-

tween the magnitudes of the inducing electric fields and the induced current density

of the material. It provides information about the material’s atomic-level electronic

structure and behavior. Figure 4.14 depicts the optical conductivity of our com-

pounds K2AgXI6 (X = Sb, Bi) at ambient conditions and under pressure. This

figure indicates the degree to which a material conducts electricity when subjected

to an applied electric field. The image illustrates how our compound’s conductivity
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Figure 4.14: The computed optical (a) Conductivity of K2AgSbI6 and (b) Conductivity

of K2AgBiI6 at ambient and under hydrostatic pressure.

increases as it crosses the x-axis band gap energy. This is necessary for our com-

pound to excite its electrons from the valence band (VB) to the conduction band

(CB) to this degree of energy. As a result, the CB in the material gains free electrons,

enabling electrical conductivity. The behavior of optical conductivity and absorp-

tion coefficient plots are similar because the attenuation of incident light increases

electron concentration in the conduction band. The peaks of optical conductivity

become sharper with the application of hydrostatic pressure in the UV region at

7 eV for K2AgSbI6 and 7.2 eV for K2AgBiI6. Therefore, the optical conductivity

increases with increasing pressure for both systems compared to ambient pressure.

The conductivity begins to decline after reaching an energy of 10 eV for both sys-

tems.
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4.4.4 Optical reflectivity

Optical reflectivity R(ω) is the fraction of incident light that is reflected off the

surface of a material. It can be defined as the ratio of the intensity of incident

radiation to the intensity of reflected radiation. The optical reflectivity can be

directly represented by the dielectric constant, as stated in reference [104]:
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Figure 4.15: The computed optical (a) Reflectivity of K2AgSbI6 and (b) Reflectivity of

K2AgBiI6 at ambient pressure and under hydrostatic pressure.

R(ω) =
−iω(ϵ2(ω)− 1)

4π
(4.7)

The optical reflectivity is influenced by various factors such as the material’s com-

position, structure, and surface properties. Additionally, the wavelength and angle

of the incident radiation also play significant roles. Optical reflectivity finds ap-
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plications in various fields like mirrors, photovoltaics, sensing, and nano-photonics.

A material’s ability to reflect light is measured by its optical reflectivity. Figure

4.15 shows how our material’s optical reflectivity for K2AgXI6 (X = Sb, Bi) varies

with different energies at ambient pressure and under applied pressure. At ambient

pressure, reflectivity starts increasing after a threshold and peaks at the boundary

of the visible region, making a sharp peak at 3.3 eV for K2AgSbI6 and at 3.5 eV

for K2AgBiI6. At ambient pressure, the reflectivity is less than 30 percent of the

incident electromagnetic wave for both systems. Under applied pressure, reflectivity

increases to about 43 percent for both systems. In the visible region, the maximum

reflectivity is greater than 30 percent for both systems under all applied pressures.

Therefore, a large value of R(ω) compared to 0 GPa pressure influences the perfor-

mance of any optical device.

4.4.5 Refractive index

The refractive index is defined as the ratio of the speed of light at a specific substance

to its speed in vacuum, and it is used to characterize the degree to which light is

slowed down as it passes through a material. The relationship between the refractive

index n(ω) as a function of frequency and the dielectric constant can be expressed

through equation as stated in reference [104]:

n(ω) =

√
[ϵ21 + ϵ22]

1
2 + ϵ1(ω)

2

√
2

(4.8)

The refractive index controls both the amount of light bending (or refraction) that

occurs when light travels through a material and the angle at which light is reflected

at its outermost layer. A refractive index diagram of K2AgXI6 (X = Sb, Bi) double

perovskites at ambient pressure and under hydrostatic pressure is presented in Figure

4.16, along with a graph illustrating the relationship between photon energy and

refractive index. The change of n(ω) with respect to energy is similar to ϵ1(ω), and

both express the same information about the material. The relation between the

static values of the real dielectric constant and the refractive index, n(0) = ϵ1(0)
1/2,
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Figure 4.16: The computed optical (a) Refraction of K2AgSbI6 and (b) Refraction of

K2AgBiI6 at ambient and under hydrostatic pressure.

is satisfied, as evidenced by the static real dielectric constant. From the figure,

in the case of K2AgSbI6, under all applied pressures compared to 0 GPa, n(ω)

increases when light energy enters the visible region and becomes maximum at 20

GPa. Similarly, in the case of K2AgBiI6, n(ω) increases in the visible region and

becomes maximum at 50 GPa. Therefore, there is a significant influence of applied

pressure on the refractive index compared to 0 GPa.

In summary, all the calculated optical properties under applied pressure compared

to ambient conditions indicate the improved optical usability of K2AgXI6 (X = Sb,

Bi) as an optoelectronic device. But between the two systems, K2AgBiI6 is more

suitable than K2AgSbI6 based on the dielectric function, optical absorption, optical

conductivity, reflectivity, and refractive index.
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4.5 Thermoelectric properties

The potential difference produced by a heat gradient during energy transfer can

be utilized in thermoelectric materials for converting thermal energy into electrical

energy. Temperature gradients are caused by the movement of charges for energy

transfer, resulting in a potential difference and a thermoelectric effect. Thermoelec-

tric compounds have been studied for converting heat power into electricity for use

in computer cooling, tiny sensor devices, and thermoelectric refrigerators over the

past few years.

Different parameters of transport properties are shown in graphs for K2AgXI6 (X

= Sb, Bi) compounds. A higher Seebeck coefficient, higher electrical conductivity,

and higher thermal conductivity result in fascinating thermoelectric performance.

The thermoelectric properties of lead-free halide K2AgXI6 (X = Sb, Bi) double

perovskites at ambient pressure and under hydrostatic pressure were calculated using

the BoltzTrap package. We determined the transport coefficients such as the Seebeck

coefficient (S), electrical conductivity (σ/τ), thermal conductivity (κe/τ), power

factor (S2σ/τ), and dimensionless figure of merit (ZT) as a function of temperature,

combined in a compressed form as [105].

ZT =
S2σT

κ
. (4.9)

4.5.1 Seebeck coefficient

The Seebeck coefficient measure the magnitude of induced change in voltage by

applying the change in temperature, which can be seen in the mathematical form,

S =
µ∇V
∇T

(4.10)

We accomplished the Seebeck coefficient (S) against temperature as demonstrated

in Figure 4.17 for halide double perovskites K2AgXI6 (X = Sb, Bi). At 300 K tem-

perature S found maximum about 264 µV /K for K2AgSbI6 compound and about
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Figure 4.17: Calculated thermal properties to observe the (a) Seebeck coefficient of

K2AgSbI6 and (b) Seebeck coefficient of K2AgSbI6 at ambient and under hydrostatic

pressure

268 µV /K for K2AgBiI6 compound while with increasing temperature S linearly

decreased, observed 214 µV /K and 222 µV /K for K2AgSbI6 and K2AgBiI6 com-

pounds at 1000 K temperature as shown in the figure. We investigated the Seebeck

coefficient against temperature for K2AgXI6 (X = Sb, Bi) double perovskites un-

der different pressures, up to 20 GPa for the K2AgSbI6 system and up to 50 GPa

for the K2AgBiI6 system, as shown in Figure 4.17. From the figure, we see that

the Seebeck coefficient decreases with rising temperature and also decreases under

pressure. Excellent thermoelectric materials are indicated by S ≥ 200 µV /K [106].

At room temperature, our computations at ambient pressure yield 264 µV /K for

the K2AgSbI6 system and 268 µV /K for the K2AgBiI6 system, which are highly

exceptional compared to the quoted number. Under all applied pressures, the value
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of S gradually decreases compared to 0 GPa for both systems. Thus, the studied

double perovskite materials at ambient pressure are excellent for thermoelectric ap-

plications and among the two systems K2AgBiI6 is more suitable for thermoelectric

applications than K2AgSbI6.

4.5.2 Electrical conductivity

Conduction in materials is induced by the free motion of carriers from one point

to another. In semiconductor materials, there are two key factors for conductivity:

carrier concentrations and carrier mobilities. These can be expressed mathematically
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Figure 4.18: Calculated thermal properties to observe the (a) Electrical conductivity

of K2AgSbI6 and (b) Electrical conductivity of K2AgBiI6 at ambient and under induced

pressure
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as σ = neµe + nhµh. The electrical conductivity of a material quantifies the flow

of charge through it. We computed the electrical conductivity per relaxation time

(σ/τ) against temperatures ranging from 100 K to 1000 K, as shown in Figure 4.18

for K2AgXI6 (X = Sb, Bi) double perovskite materials. From the figure, we can

see that the conductivity of the compounds increases linearly with temperature,

indicating an increase in carrier concentration associated with electrical conduction.

The investigated compounds’ semiconductor nature is supported by the increase in

electrical conductivity, which represents a continually growing carrier concentration

and implies a negative temperature coefficient of resistance. We also computed the

electrical conductivity per relaxation time (σ/τ) against temperature, as shown in

Figure 4.18, for K2AgXI6 (X = Sb, Bi) double perovskite materials under hydrostatic

pressure. From the figure, we see that under induced pressure, the value of σ/τ

increases continuously with temperature. At 20 GPa for the K2AgSbI6 system and at

50 GPa for the K2AgBiI6 system, the value of σ/τ becomes maximum, which means

that with increasing pressure, more and more electrons get excited, contributing to

an increase in carrier concentration.

4.5.3 Thermal conductivity

Thermal conductivity explains the transportation through a material as the mate-

rials atom are constantly moving in rotational, translational or vibrational motion

The variation of atoms is responsible for generating heat or thermal energy in a

material. We investigated thermal conductivity (κe/τ) for K2AgXI6 (X = Sb, Bi)

compounds as shown in Figure 4.19. From figure we can see, the conductivity of the

compound increases linearly with temperature which is similar behavior as electrical

conductivity.

We also computed the thermal conductivity per relaxation time (κe/τ) against tem-

perature as shown in Figure 4.19 for potassium based K2AgXI6 (X = Sb, Bi) double

perovskites materials under hydrostatic pressure. We see from figure, under in-

duced pressure, the value of κe/τ increases continuously with temperature. At 20

GPa for K2AgSbI6 system and at 50 GPa for K2AgBiI6 system, the value of κe/τ
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Figure 4.19: Calculated thermal properties to observe the (a) Thermal conductivity

of K2AgSbI6 and (b) Thermal conductivity of K2AgBiI6 at ambient and under induced

pressure

becomes maximum. Thus, better thermoelectric efficiency can only be achieved by

a thermoelectric material with optimal thermal and electronic conductivities under

hydrostatic pressure compared to ambient conditions.

4.5.4 Power factor

The power factor (S2σ/τ) of a material is a measure of how efficiently it can convert

electric power into useful mechanical work or vice versa. Power factor of a material

provides electrical energy. Figure 4.19 shows the power factor against temperature

for K2AgXI6 (X = Sb, Bi) compounds and observed it at 300 K for both materials are

approximately 0.9 ×1011 W/mK2s and 1.1×1011 W/mK2s respectively. The value

of power factor increases continuously with temperature. At 1000 K temperature,
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Figure 4.20: Calculated thermal properties to observe the (a) Power factor of K2AgSbI6
and (b) Power factor of K2AgBiI6 at ambient and under induced pressure

the value of power factor becomes maximum for both systems. We investigated

power factor against temperature under hydrostatic pressure for both K2AgXI6 (X

= Sb, Bi) compounds as shown in Figure 4.20. Without considering thermal con-

ductivity, the power factor of a thermoelectric material can be used to explain its

efficiency. At ambient pressure the power factor increases from 0.9 ×1011 W/mK2s

to 4.3 ×1011 W/mK2s with temperature for K2AgSbI6 compound and 1.1 ×1011

W/mK2s to 4.1 ×1011 W/mK2s for K2AgBiI6 compound. After applying pressure,

the power factor increases gradually for both systems.
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4.5.5 Figure of merits

Dimensionless parameter which can measure the material quality for the thermal

devices use is figure of merits. In last we computed the figure of merits (ZT) can be

seen in Figure 4.21 for K2AgXI6 (X = Sb, Bi) compounds at ambient pressure. At

temperature 300 K, ZT value examined approximately 0.776 and by increase tem-

perature ZT increased til for K2AgSbI6 about 0.79 at 500 K temperature. Then the

ZT value decreases with increases temperature. Similary at temperature 300 K, ZT

value examined approximately 0.791 and by increase temperature ZT increased til

for K2AgBiI6 about 0.797 at 500 K temperature. Then the ZT value decreases with

increasing temperature. The figure of merit (ZT) is used to measure the quality of
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Figure 4.21: Calculated thermal properties to observe the (a) Figure of merits of

K2AgSbI6 and (b) Figure of merits of K2AgBiI6 at ambient and under induced pres-

sure
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materials for thermal devices. The ZT values of K2AgXI6 (X = Sb, Bi) compounds

have been examined, as shown in Figure 4.21, under induced pressure. Under applied

pressure, the ZT value gradually decreases for both systems compared to ambient

conditions. In summary, K2AgXI6 (X = Sb, Bi) compounds exhibit enhanced elec-

trical and thermal conductivity when exposed to pressure, owing to the presence of

more free electrons in the conduction band. This results in improved thermoelectric

performance, making it highly viable for devices.

4.6 Mechanical properties

The mechanical characteristics provides information about the possible industrial

applications and about the micro cracks at the growing process. Mechanical charac-

teristics show a material’s capacity to return to its original shape in the event that

distortion forces are removed. Since these characteristics are linked to the behav-

iors of materials, such as hardness, durability, strength, reliability, and performance

necessary to identify the type of application and fabrication, the elastic constants

of a material play a crucial role in determining how it responds to an applied stress.

A system’s need for an adequate number of elastic constants is directly correlated

with its structural symmetry. The fewer elastic constants needed to investigate the

mechanical behavior of the system, the more symmetrical the structure. In case

of the cubic symmetry as in our case, only three elastic constants viz. C11, C12,

and C44 are required to define the various mechanical behavior of the materials.

The calculated elastic parameters for K2AgXI6 (X = Sb, Bi) are reported in Table

(4.3-4.6) respectively at ambient and under induced pressure.

Second order elastic constants (Cij), bulk modulus, Young’s modulus, shear modu-

lus, Poisson’s ratio, anisotropy, brittleness, ductility, elastic wave propagation, and

other solid state phenomena are examples of properties.For cubic crystals the re-

quired requirements for existing in stable or meta-stable phase is established in

form stability condition [107],

C11 − C12 > 0, C11 > 0, C44 > 0, C11 + 2C12 > 0, C12 < B < C11
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Table 4.3: Calculated the estimated elastic constant C11, C12, C44, Cauchy’s pressure

of K2AgSbI6 under hydrostatic pressure.

Pressures (GPa) C11 C12 C44 C12 − C44

0 40.42 9.49 5.79 3.70

5 82.36 16.76 6.34 10.42

10 136.88 15.36 7.41 7.95

15 173.73 13.84 9.45 4.39

20 198.13 16.47 9.63 6.84

The compounds’ mechanical stability under all pressures and ambient conditions is

demonstrated by the positive values of the constants, which meet the established

stablity criterion. Using the computed elastic constants, various other mechanical

parameters can be defined. The bulk and shear moduli that can forecast the hardness

of material can be found using the Viogt-Reuss-Hill averaging scheme approach

[108]. The Viogt limits of the bulk modulus (B) and shear modulus (G) for the

cubic system are as follows:

Bv =
(C11 + 2C12)

3
(4.11)

Gv =
(C11 − C12 + 3C44)

5
(4.12)

However, the Reuss formulae for the bulk and shear moduli are:

Bv = BR (4.13)

GR =
5(C11 − C12 + C44)

4C44 + 3(C11 − C12)

(4.14)

Using Hill’s average approximation the bulk and shear moduli are defined as;

B =
Bv +BR

2
(4.15)
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Table 4.4: The calculated the Bulk modulus B (GPa), the Shear modulus G (GPa),

Young’s modulus Y (GPa), the elastic anisotropy factor (A), B/G ratio and Poisson’s

ratio (ν) of K2AgSbI6 under hydrostatic pressure.

Pressures (GPa) B G Y A B/G ν

0 19.80 8.69 22.71 0.374 2.27 0.308

5 38.63 13.14 35.14 0.193 2.94 0.347

10 55.86 20.09 53.82 0.121 2.78 0.339

15 67.14 26.13 69.38 0.118 2.57 0.327

20 77.02 28.55 76.24 0.106 2.69 0.335

G =
Gv +GR

2
(4.16)

Young’s modulus, determines the strength of material is ratio of linear stress and

strain can be evaluated via relation.

Y =
9BG

3B +G
(4.17)

According to Pettifor [109], the Cauchy pressure (CP = C12 − C44) might disclose

the brittle or ductile nature of the atomic bond. For metallic bonding with ductile

nature, the CP is positive. Moreover, for brittle materials with directional and

angular bonding character, it has negative value. Additionally, Pugh’s ratio (B/G)

and Poisson’s ratio (ν) [110] can be used to understand a compound’s brittile and

ductile nature. This is a crucial attribute for practical device febrication. Properties

such as brittileness, stiffness, and ductility are taken into account based on Poission’s

and Pugh’s ratios.The compound is thought to be ductile and suitable for device

febrication if its B/G and ν heigher than 1.75 and 0.26. However, a compound

is considered to be plastic if its Poisson’s ratio is smaller than 0.26 and indicates

that the chemical is brittile [111]. Again equation 4.17 can be used to compute

Zener’s anisotropy (A) [112, 113] factor, which indicates that the compounds are
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Table 4.5: Calculated the estimated elastic constant C11, C12, C44, Cauchy’s pressure of

K2AgBiI6 under hydrostatic pressure.

Pressures (GPa) C11 C12 C44 C12 − C44

0 39.38 8.94 5.27 3.67

5 81.99 16.15 5.13 11.02

10 116.02 20.66 5.64 15.02

20 196.64 19.17 5.83 13.34

30 244.77 23.29 6.76 16.53

40 296.79 24.30 6.70 17.59

50 344.58 27.65 7.90 19.75

Table 4.6: The calculated the Bulk modulus B (GPa), the Shear modulus G (GPa),

Young’s modulus Y (GPa), the elastic anisotropy factor (A), B/G ratio and Poisson’s

ratio (ν) of K2AgBiI6 under hydrostatic pressure.

Pressures (GPa) B G Y A B/G ν

0 19.09 8.19 21.51 0.346 2.33 0.312

5 38.10 12.00 32.58 0.155 3.17 0.357

10 52.45 15.58 42.53 0.118 3.36 0.364

20 78.33 24.15 65.71 0.065 3.24 0.360

30 97.12 29.59 80.58 0.061 3.28 0.361

40 115.13 34.67 94.53 0.049 3.32 0.363

50 133.29 40.43 110.16 0.049 3.29 0.362

anisotropic.

A =
2C44

C11 − C12

(4.18)

From Table 4.4 for the system K2AgSbI6, we can see that at ambient pressure, the

value of ν is 0.308 and B/G is 2.27. Under induced pressure, the values of ν and

B/G gradually increase. At 20 GPa pressure, they are 0.335 and 2.69, respectively,

indicating a more ductile nature compared to ambient conditions. Similarly, from

Table 4.6 for the system K2AgBiI6, at ambient pressure, the value of ν is 0.312 and

B/G is 2.33. Under induced pressure, the values of ν and B/G gradually increase.
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At 50 GPa pressure, they are 0.362 and 3.29, respectively, indicating a more ductile

nature compared to ambient conditions.

When we compare the two systems, K2AgSbI6 and K2AgBiI6, we can see that

K2AgBiI6 is more ductile than K2AgSbI6. Therefore, we can conclude that the

system K2AgBiI6 is more suitable for mechanical device applications between the

two.

72



Chapter 5

Conclusions

The crystal structure of the material K2AgXI6 (X= Sb, Bi) double perovskite has

been analyzed computationally using the Full Potential Linear Augmented Plane

Wave (FP-LAPW) method based on Density Functional Theory (DFT) as imple-

mented in WIEN2k, both at ambient conditions and under different hydrostatic

pressures. The Perdew-Burke-Ernzerhof and Generalized Gradient Approximation

(PBE-GGA), designed for materials, was utilized to compute the structural proper-

ties, revealing an increase in the lattice parameter when substituting the Bi element

for the Sb element. The lattice parameter was determined to be 12.03 Å for the

K2AgSbI6 and 12.18 Å for the K2AgBiI6. In this thesis, we calculated the electronic,

optical, thermoelectric, and mechanical properties using the modified Becke and

Johnson (mBJ) approximation for the halide double perovskites K2AgXI6 (X= Sb,

Bi) up to 20 GPa pressure for the K2AgSbI6 compound and up to 50 GPa pressure

for the K2AgBiI6 compound, compared to ambient pressure. We chose the mBJ po-

tential to compensate for PBE-GGA’s underestimation of the band gap. Our results

suggest that the bandgap increases from 0.97 eV to 1.599 eV after replacing Sb with

Bi. The electronic band structure reveals a p-type semiconducting nature, indicat-

ing indirect band gaps that decrease from 0.97 eV to 0 eV for the system K2AgSbI6

and from 1.599 eV to 0 eV for the system K2AgBiI6 under induced pressures. The
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optical properties were studied as a function of photon energy (eV) within an energy

range of 0-10 eV under different hydrostatic pressures for both compounds. From

optical properties, including dielectric functions, optical reflectivity, refraction, ab-

sorption coefficients, and optical conductivity, show improved optical characteristics

in the visible and ultraviolet regions under all induced pressures compared to am-

bient conditions for both systems. Therefore, the studied double perovskites could

be contenders for solar cell and optoelectronic device applications. Thermoelectric

efficiency was assessed using the figure of merit, power factor, Seebeck coefficient,

electrical and thermal conductivity, and power factor. The Boltzmann transport

equation was also used to compute these transport characteristics. At ambient con-

ditions, the studied compounds exhibit a high Seebeck coefficient (≥ 200µV /K)

and a figure of merit of approximately 0.78, compared to the pressurized conditions.

But with increasing pressure and temperature, the electrical conductivity, thermal

conductivity, and power factor also increase for both systems. The ductility and

stability of the compounds under ambient and pressurized conditions are assured by

the mechanical properties of the compounds. From the mechanical properties, the

Pugh’s and Poisson’s ratios ensure the ductility and mechanical stability of the com-

pounds under induced pressure compared to ambient pressure. By virtue of their

tolerance factors of 0.99 for K2AgSbI6 and 0.94 for K2AgBiI6, as well as their elastic

properties, these materials are structurally, thermodynamically, and mechanically

stable.

In summary, K2AgXI6 (X= Sb, Bi) double perovskite materials demonstrate favor-

able electronic, mechanical, thermoelectric, and optical properties under induced

hydrostatic pressure compared to ambient conditions. Thus, both materials are

suitable for solar cell applications, but between the two systems, K2AgBiI6 is more

suitable than K2AgSbI6 based on negative formation energy, minimum energy states,

octahedral factors, optical properties, thermal properties, and mechanical proper-

ties. We expect that our research will contribute new knowledge and value to the

exploration of cost-effective optoelectronic materials.
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