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Abstract

The development of lead-free halide double perovskites for renewable energy is an

emerging field due to their interesting properties, such as high efficiency in light ab-

sorption, excellent stability under various environmental conditions, and potential

for cost-effective large scale production. In this work, we computationally explored

the mechanical, optoelectronic, and thermoelectric characteristics of halide double

perovskite K2YAgBr6 using density functional theory up to 150 GPa applied pres-

sure. Both the formation energy and tolerance factor ensure the structural stability

of the compound. The presence of band edges at two different symmetry points indi-

cates its indirect bandgap of 3.07 eV at ambient pressure, and the value of the band

gap decreases with increasing pressure. The absorptivity and dielectric function

values are increased with driving pressure. The absorption peak is shifted towards

the lower energy region with increased hydrostatic pressure. The mechanical be-

haviors demonstrated that the material is mechanically stable and ductile, with its

ductility further improved under pressure. By using the BoltzTraP code based on

semi-classical Boltzmann transport theory, we estimate the thermoelectric proper-

ties of K2YAgBr6 under different hydrostatic pressure. The results show promising

Seebeck coefficient and figure of merit, suggesting its potential for optoelectronics

and thermoelectric applications.
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Chapter 1

Introduction

The exponential increasing energy demand of human and continuously decreasing

natural energy resousces has motivated the scientific community to look for smart

and technologically advanced devices which can harvest energy from natural sources

like the sun, wind and tides [1, 2]. Sun is one of the biggest sources of heat and

light which could be converted into electrical energy using suitable optoelectronic

and thermoelectric devices [3]. The efficiency of any such device depends upon the

underlying material in these devices. In recent years, double perovskite materials

have garnered significant attention due to their promising applications in various

fields, including light-emitting diodes (LEDs), lasers, radiation detectors, and solar

cells [4–8]. Among different types of double perovskites, a lot of work has been

devoted to lead-based perovskite solar cells. For instance, CH3NH3PbX3 (where X =

I, Cl, Br) perovskites have been extensively explored [9–12]. Such kinds of solar cells

are formed by mixing the inorganic materials in an organic matrix [13,14]. Their low

processing cost, easy fabrication method, lightweight nature, suitable direct band

gap, high absorption properties, and charge carriers effective masses are supposed

to be the key features that make them suitable for optoelectronic devices [15–18].

However, their applications have long been limited by their unstable structure, high

humidity sensitivity and the toxicity of lead [19].
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Introduction

Therefore, scientists are looking for lead-free materials that could curtile our de-

pendence on fossil fuels and make eco-friendly devices [20]. With this consider-

ation, halide-based double perovskites have attracted a lot of attention in recent

years [21–23]. Double perovskite materials derived from a single perovskite com-

pound represent by the formula ABX3 [24]. The structural and compositional

flexibility of single perovskites allows them to accommodate a variety of elements

at A and B sites, which gives them wide spectrum of physical properties. This

spectrum can further be extended using the substitution method where 50 % of A

, B or both ions can be replaced with other elements [25]. Double perovskites are

compounds whose unit cell doubles when half of the B-type element is replaced with

another element B′ and denoted by the formula A2BB
′ X6 [26]. The presence of two

different transition elements at the B site and an alkali or alkaline earth metal at the

A site provides even greater flexibility and degrees of freedom, which bring double

perovskites to the verge of new technological innovation. The possibility of a large

variety of cationic substitutions reveals the potential of tuning the optoelectronic

characteristics of this class of compounds [27,28].

Recently, a lot of work is devoted to the optoelectronic and thermoelectric inves-

tigations of double perovskites because they provide an accommodative platform

to incorporate a veriety of metal cation [29, 30]. For instance, Yang et al. They

improved the stability and power conversion efficiency (PCE) of Cs2AgBiBr6 by

slowing down crystal growth with thiourea during synthesis, achieving a PCE of

3.07 % and maintaining 95 % retention rate [31–33]. Yang et al. studied the in-

terface engineering, band gap engineering and film quality optimization to improve

the stability and conversion efficiency of perovskite solar cells [34]. In another re-

port, Kangsabanik et al. performed an intuitive study and revealed how the double

perovskite are overtaking simple perovskite due to their higher stability and better

conversion efficiency [35]. Extensive studies exploring the multifunctional features

of double perovskite oxides, hydroxides, nitrides, sulfides, and halides have been

conducted. In addition, Wang et al. mixed graphene oxides with Cs2AgBiBr6 to

examine their photo-catalytic degradation for hydrogen production [36, 37]. These

compositions exposed higher stability for more than 120 hours.
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The study of optoelectronic and thermoelectric properties reported by Ghulam M.

Mustafa et al. [38] demonstrates that the non-toxic K2YAgBr6 double perovskite

has ductility entity but the halide perovskite semiconductor shows large bandgap

value 3.4 eV. It was observed that pressure effect on halide perovskites has seized

great attention by the researchers in recent years [39–46], as it is generally known,

effect of pressure has a vital role on the physical and chemical features of materials.

The decrease of lattice volume of metal halides for the bulk phase is shown with

enhanced pressure [41,44]. A material’s different properties can be readily adjusted

by applying a hydrostatic pressure [47–49]. For instance, pressure can modify the

density of states close to the Fermi level, which can change electronic bandgaps

or electrical conductivity [50]. In a theoretical study of cesium tin halides, it is

exhibited that band gap decreases with decreasing lattice parameter [51]. Applying

hydrostatic pressure can reduce the lattice parameter. The goal of our present work

is to apply various hydrostatic pressures on K2YAgBr6 double perovskite in order

to reduce the band gap and consequently it may improve the optical absorption as

well as proficiency of solar cells, optoelectronic and other thermoelectric devices.

The present study deals with various hydrostatic pressure effects on the structural,

electronic, optical, thermoelectric and mechanical properties of K2YAgBr6 double

perovskite using density functional theory (DFT), utilizing the WIEN2k code [52].

Transport properties were calculated using the BoltzTraP code, where we computed

thermal and electrical conductivities, the Seebeck coefficient and the power factor.

This thesis is arranged in the following chapters: Chapter 1 includes some pre-

liminary details about perovskites and cause of motivation for work on K2YAgBr6

double perovskite. Chapter 2 and 3 we discuss the basic quantum mechanics as

the base of density functional theory. Starting from Schrödinger equation we dis-

pute the criteria for the ground state wave function. We shortly discuss the Born

oppenheimar approximation and the Hartree-Fock approach with its limitations in

this chapter. We discuss the theoritical density functional theory. Starting with

the Thomas Fermi model we discuss the Hohenberg Khon theorems, Kohn Sham

equation with the equivalent flowchart and the exchange correletion functionals that

can be used to solve a many body system . In chapter 4 describes the detail of com-
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putetional method used for calculations. Chapter 5 present results of structural,

electronic ,optical, thermoelectronic and mechanical properties followed by discus-

sion on obtained results. In last chapter 6 conclusions was drawn to enlighten the

future potential of this research.
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Chapter 2

Basic Quantum Mechanics

2.1 Schrödinger equation

Schrödinger equation refers to a fundamental equation of quantum physics. The

Schrödinger equation is a linear partial differential equation that governs the wave

function of a quantum mechanical system. It is a key result in quantum mechanics,

and its discovery was a significant landmark in the development of the subject. The

equation is named after Erwin Schrödinger, who postulated the equation in 1925,

and published it in 1926 [53]. The time-independent Schrödinger equation

Ĥψ(r⃗) = Eψ(r⃗) (2.1)

Where, Ĥ is the hamiltonian operator and ψ is the wave function. It is often

impracticable to use a complete relativistic formulation of the formula; therefore

Schrödinger himself postulated a non-relativistic approximation which is nowadays

often used, especially in quantum chemistry.

Using the Hamiltonian for a single particle

Ĥ = T̂ + V̂ = − ℏ2

2m
∇⃗2 + V (r⃗) (2.2)

5
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leads to the (non-relativistic) time-independent single-particle Schrödinger equation

Eψ(r⃗) =

[
− ℏ2

2m
∇⃗2 + V (r⃗)

]
ψ(r⃗). (2.3)

For N particles in three dimensions, the Hamiltonian is

Ĥ =
N∑
i=1

p̂2i
2mi

+ V (r⃗1, r⃗2, ...r⃗N) = −ℏ2

2

N∑
i=1

1

mi

+ V (r⃗1, r⃗2, ....r⃗N) (2.4)

The corresponding Schrödinger equation reads

Eψ(r⃗1, r⃗2, ...r⃗N) =

[
− ℏ2

2

N∑
i=1

1

mi

∇2
i + V (r⃗1, r⃗2, ...r⃗N)

]
ψ(r⃗1, r⃗2, ...r⃗N) (2.5)

Special cases are the solutions of the time-independent Schrödinger equation, where

the Hamiltonian itself has no time-dependency (which implies a time-independent

potential V(r⃗1, r⃗2, ...r⃗N) and the solutions therefore describe standing waves which

are called stationary states or orbitals). Furthermore, the left hand side of the

equation reduces to the energy eigenvalue of the Hamiltonian multiplied by the

wave function, leading to the general eigenvalue equation

Eψ(r⃗1, r⃗2, ...r⃗N) = Ĥψ(r⃗1, r⃗2, ...r⃗N) (2.6)

Again, using the many-body Hamiltonian, the Schrödinger equation becomes

Eψ(r⃗1, r⃗2, ...r⃗N) =

[
− ℏ2

2

N∑
i=1

1

mi

∇2
i + V (r⃗1, r⃗2, ...r⃗N)

]
ψ(r⃗1, r⃗2, ..., r⃗N) (2.7)

2.2 The wave function

A wave function is a mathematical representation of a particle’s quantum state as

a function of momentum, position, time and spin in quantum physics. It contains

all the information about the particle’s state. A wave function is represented by

the Greek letter ψ. The probability of finding an electron within the matter-wave

6
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may be explained using a wave function. This may be produced by incorporating

an imaginary number that is squared to give a real number solution resulting in an

electrons position. Max Born developed a probabilistic interpretation of the wave

function as a probability density, which is a major principle of the Copenhagen

interpretation of quantum mechanics [54,55].

|ψ(r⃗1, r⃗2, ...r⃗N)|2dr⃗1, dr⃗2, ...r⃗N . (2.8)

The particles 1, 2, ..., N are all present at the same time in the corresponding vol-

ume element dr⃗1, dr⃗2, ...dr⃗N which is the probability that is specified by equation

(2.8) [56]. If the positions of two particles are exchanged, the total probability

density cannot be affected. That is to written as,

|ψ(r⃗1, r⃗2, ...r⃗i, r⃗j, ...r⃗N)|2 = |ψ(r⃗1, r⃗2, ...r⃗j, r⃗i, ...r⃗N)|2. (2.9)

The symmetrical and anti-symmetrical wave functions are two possible wavefunction

behaviours during a particle exchange. The symmetrical wave function remains

unchanged as a result of such exchange, which corresponds to bosons (integer or zero

spin). However, the anti-symmetrical wave function shifts it’s sign to correspond to

fermions (half-integer spin) [57,58]. Because electrons are fermions, in this text may

explore the anti-symmetric fermion wave function. The Pauli exclusion principle,

which states that no two electrons may occupy the same orbital, is followed by the

anti-symmetric fermion wave function. Another result of probability interpretation

is the normalization of the wave function [57]. A particle’s wave function must be

normalized. The probability of finding the particle somewhere in space is unity as

∫
dr⃗1

∫
dr⃗2...

∫
dr⃗N |ψ(r⃗1, r⃗2, ...r⃗N |2 = 1. (2.10)

Equation (2.10) is physically valid. Continuous and square-integrable wave func-

tions are required. In quantum physics, any wave function that is not continuous

and square-integrable has no physical meaning [59]. When we calculate the expec-

tation values of operators with a wave function, we get the expectation value of the

7
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corresponding observable for that wavefunction, which is another important aspect

of the wave function. This may be expressed for an observable O(r⃗1, r⃗2, ...r⃗N) as

O = ⟨O⟩ =
∫
dr⃗1

∫
dr⃗2

∫
dr⃗Nψ

∗(r⃗1, r⃗2, ...r⃗N)Ôψ(r⃗1, r⃗2, ...r⃗N). (2.11)

2.3 Born-Oppenheimer (BO) approximation

The Schrödinger equation of a many-body system is,

Ĥtotψ({R⃗I}, {r⃗i}) = Eψ({R⃗I}, {r⃗i}). (2.12)

Where, Htot is the total Hamiltonian, E is the total energy and ψ({R⃗I}, {r⃗i}) is the

total wave function of the system. The total Hamiltonian of a many-body system

consisting of nuclei and electrons can be written as

Ĥtot = −
∑
I

ℏ2

2MI

∇⃗2
R⃗I

−
∑
i

ℏ2

2me

∇⃗2
r⃗i
+

1

2

∑
I,J

ZIZJe
2

|R⃗I − R⃗J |

+
1

2

∑
i,j

e2

|r⃗i − r⃗j|
−
∑
I,i

ZIe
2

|R⃗I − r⃗i|
,

(2.13)

where, the indexes I,J run on nuclei, i and j on electrons, R⃗I and MI are posi-

tion and mass of the nuclei, r⃗i and me are position and mass of the electrons. The

first term of the above equation represents the kinetic energy of the Nuclei. Sec-

ond term represents the kinetic energy of the electrons. Third term 1
2

∑
I,J

ZIZJe
2

|R⃗I−R⃗J |

is for potential energy of nucleus-nucleus Coulomb interaction, the fourth term is

the potential energy electron-electron Coulomb interaction and the last term is the

potential energy of nucleus-electron Coulomb interaction.

As nuclei are significantly heavier than electrons (the mass of a proton is about 1836

times the mass of an electron), the electrons travel considerably more quickly than

the nuclei [59]. In that case, Born-Oppenheimer (BO) approximation was proposed

by Born and Oppenheimer in 1927. The Born-Oppenheimer approximation is an

assumption that it is possible to distinguish equation(2.12) between the nuclear and

8
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electronic motions of molecules. Consider the nuclei to be static, classical potential

with respect to the electron, then address the electronic issue without further consid-

eration of the nuclei [60] . On the timeline of the electronic transition, it is possible

to claim that the core movement can be disregarded, i.e., it has no bearing on them

[61–63]. Adopting Born-Oppenheimer approximation the electronic hamiltonian the

becomes

Ĥ = −
∑
i

ℏ2

2me

∇⃗2
r⃗i
+

1

2

∑
i,j

e2

|r⃗i − r⃗j|
−

∑
I,i

ZIe
2

|R⃗I − r⃗i|
. (2.14)

The BO approximation’s importance lies in it’s ability to distinguish between the

motion of electrons and nuclei. The starting point of DFT is the electron motion in a

static external potential Vext(r⃗) created by the nucleus. Born and Huang expanded

the BO approximation, giving it the name Born-Huang (BH) approximation, to

account for more non-adiabatic effects in the electronic Hamiltonian than the BO

approximation did.

2.4 The Hartree-Fock (HF) approach

In order to find a suitable strategy to approximate the analytically not accessible

solutions of many-body problems, a very useful tool is variational calculus, similar

to the least action principle of classical mechanics. By the use of variational calcu-

lus, the ground state wave function ψ0 , which corresponds to the lowest energy of

the system E0 can be approached. Hence, for now only the electronic Schrödinger

equation is of interest, therefore in the following sections we set Ĥ ≡ Ĥel, E ≡ Eel

, and so on. Observables in quantum mechanics are calculated as the expectation

values of operators [64, 65]. The energy as observable corresponds to the Hamil-

ton operator, therefore the energy corresponding to a general Hamiltonian can be

calculated as

E = ⟨Ĥ⟩ =
∫
dr⃗1

∫
dr⃗2...

∫
dr⃗Nψ ∗ (r⃗1, r⃗2, ..., r⃗N)Ĥψ(r⃗1, r⃗2, ..., r⃗N) (2.15)

9
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The Hatree-Fock techique is based on the principle that the energy obtained by any

(normalized) trial wave function other than the actual ground state wave function

is always an upper bound, i.e. higher than the actual ground state energy. If the

trial function happens to be the desired ground state wave function, the energies

are equal

Etrial ≥ E0 (2.16)

Etrial =

∫
dr⃗1

∫
dr⃗2...

∫
dr⃗Nψ

∗
trial(r⃗1, r⃗2, ..., r⃗N)Ĥψtrial(r⃗1, r⃗2, ..., r⃗N) (2.17)

and

E0 =

∫
dr⃗1

∫
dr⃗2...

∫
dr⃗Nψ

∗
0(r⃗1, r⃗2, ..., r⃗N)Ĥψ0(r⃗1, r⃗2, ..., r⃗N) (2.18)

For a detailed description of this notation, the reader is referred to the original

publication [66]. In that notation, equation (2.15) to (2.17) are expressed as

⟨ψtrial|Ĥ|ψtrial⟩ = Etrial ≥ E0 = ⟨ψ0|Ĥ|ψ0⟩ (2.19)

Proof : The eigenfunctions ψi of the Hamiltonian Ĥ (each corresponding to an energy

eigenvalue Ei form a complete basis set, therefore any normalized tria wave function

ψtrialcan be expressed as linear combination of those eigenfunctions [65].

ψtrial =
∑
i

λiψi (2.20)

The assumption is made that the eigenfunctions are orthogonal and normalized.

Hence it is requested that the trial wave function is normalized, it follows that

⟨ψtrial|ψtrial⟩ = 1 = ⟨
∑
i

λiψi|
∑
j

λjψj⟩ =
∑
i

∑
j

λ∗iλj⟨ψi|ψj⟩ =
∑
j

|λj|2 (2.21)

10



Basic Quantum Mechanics

On the other hand, following (2.19) and (2.21)

Etrial = ⟨ψtrial|Ĥ|ψtrial⟩ = ⟨
∑
i

λiψi|Ĥ|
∑
j

λjψj⟩ =
∑
j

Ej|λj|2 (2.22)

Together with the fact that the ground state energy E0 is per definition the lowest

possible energy, and therefore has the smallest eigenvalue (E0 ≤ Ei), it is found that

Etrial =
∑
j

Ej|λj|2 ≥ E0

∑
j

|λj|2 (2.23)

what resembles equation (2.26). Equations(2.22) to (2.30) also include that a search

for the minimal energy value while applied on all allowed N-electron wave-functions

will always provide the ground-state wave function (or wave functions, in case of a

degenerate ground state where more than one wave function provides the minimum

energy). Expressed in terms of functional calculus,where ψ → N addresses all

allowed N-electron wave functions,

E0 = min
ψ→N

E[ψ] = min
ψ→N

⟨ψ|Ĥ|ψ⟩ = min
ψ→N

⟨ψ|T̂ + V̂ + Û |ψ⟩ (2.24)

Due to the vast number of alternative wave functions on the one hand and pro-

cessing power and time constraints on the other, this search is essentially unfeasible

for N-electron systems. Restriction of the search to a smaller subset of potential

wave functions, as in the Hartree-Fock approximation, is conceivable. A slater de-

terminant is a formula in quantum mechanics that desceibes the wave function of

a multi-fermionic system. It satisfies anti-symmetric criteria, and thus the Pauli’s

principle, by changing sign when two electrons are exchanged (or other fermions).

Only a small fraction of all potential fermionic wave functions can be expressed as

a single slater determinant, but because of their simplicity, they are an important

and useful subset. In the Hartree- Fock approach, the search is restricted to ap-

proximations of the N-electron wave function by an antisymmetric product of N

(normalized) one electron wave functions, the so called spin- orbitals χi(x⃗i) [67]. A

11
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wave function of this type is called Slater-determinant, and reads.

ψ0 ≈ ϕSD = (N !)−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x⃗1) χ2(x⃗1) · · · χN(x⃗1)

χ1(x⃗2) χ2(x⃗2) · · · χN(x⃗2)
...

...
. . .

...

χ1(x⃗N) χ2(x⃗N) · · · χN(x⃗N)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.25)

It is important to notice that the spin-orbitals χi(x⃗i) are not only depending on

spatial coordinates but also on a spin coordinate which is introduced by a spin

function, x⃗i = r⃗i, s. Returning to the variational principle and equation (2.25), the

ground state energy approximated by a single slater determinant becomes.

E0 = min
ϕSD→N

E[ϕSD] = min
ϕSD→N

⟨ϕSD|Ĥ|ϕSD⟩ = min
ϕSD→N

⟨ϕSD|T̂ + V̂ + Û |ϕSD⟩ (2.26)

A general expression for the Hartree-Fock Energy is obtained by usage of the Slater

determinant as a trial function.

EHF = ⟨ϕSD|Ĥ|ϕSD⟩ = ⟨ϕSD|T̂ + V̂ + Û |ϕSD⟩ (2.27)

For the sake of brevity, a detailed derivation of the final expression for the Hartree-

Fock energy is omitted. It is a straightforward calculation found for example in the

Book by Schwabl [64]. The final expression for the Hartree-Fock energy contains

three major parts: [67].

EHF = ⟨ϕSD|Ĥ|ϕSD⟩ =
N∑
i

(i|ĥ|i) + 1

2

N∑
i

N∑
j

[(ii|jj)− (ij|ji)] (2.28)

with

(i|ĥi|i) =
∫
χ∗
i (x⃗i)[−

1

2
∇⃗2
i −

M∑
k=1

Zk
rik

]χi(x⃗i)dx⃗i, (2.29)

(ii|jj) =
∫∫

|χi(x⃗i)|2
1

rij
|χj(x⃗j)|2dx⃗idx⃗j, (2.30)

12



Basic Quantum Mechanics

(ij|ji) =
∫∫

χi(x⃗i)χ
∗
j(x⃗j)

1

rij
χj(x⃗j)χ

∗
i (x⃗i)dx⃗idx⃗j (2.31)

The first term corresponds to the kinetic energy and the nucleus-electron inter-

actions, ĥ denoting the single particle contribution of the Hamiltonian, whereas

the latter two terms correspond to electron-electron interactions. They are called

Coulomb and exchange integral, respectively. Examination of equations (2.30) to

(2.31) furthermore reveals, that the Hartree-Fock energy can be expressed as a func-

tional of the spin orbitals EHF = E[{χi}]. Thus,variation of the spin orbitals leads

to the minimum energy. An important point is that the spin orbitals remain or-

thonormal during minimization.This restriction is accomplished by the introduction

of Lagrangian multipliers λi in the resulting equations, which represent the Hartree-

Fock equations.

f̂χi = λiχi i = 1, 2, ..., N (2.32)

with

f̂i = −1

2
∇⃗2
i −

M∑
k=1

Zk
rik

+
N∑
i

[Ĵj(x⃗i)− K̂j(x⃗i)] = ĥi + V̂ HF (i) (2.33)

Finally one arrives at the Fock operator for the i-th electron. In similarity to(2.28)

to (2.31), the first two terms represent the kinetic and potential energy due to

nucleus-electron interaction, collected in the core Hamiltonian ĥi, whereas the latter

terms are sums over the Coulomb operators Ĵj and the exchange operators K̂j with

the other j electrons, which form the Hartree-Fock potential V̂ . There are major

approximation of Hartree-Fock can be seen. The two electron repulsion operator

from the original Hamiltonian is exchanged by a one-electron operator V̂ which

describes the repulsion in average.

2.5 Limitations of the Hartree-Fock (HF) approach

Atoms as well as molecules can have an even or odd number of electrons. If the

number of electrons is even and all of them are located in double occupied spatial

13



Basic Quantum Mechanics

orbitals ϕi, the compound is in a singlet state. Such systems are called closed-

shell systems. Compounds with an odd number of electrons as well as compounds

with single occupied orbitals, i.e. species with triplet or higher ground state, are

called open-shell systems respectively. These two types of systems correspond to

two different approaches of the Hartree-Fock method. In the restricted HF method

(RHF), all electrons are considered to be paired in orbitals whereas in the unre-

stricted HF (UHF)-method this limitation is lifted totally. It is also possible to

describe open-shell systems with a RHF approach where only the single occupied

orbitals are excluded which is then called a restricted open-shell HF (ROHF) which

is an approach closer to reality but also more complex and therefore less popular

than UHF [67].

There are also closed-shell systems which require the unrestricted approach in order

to get proper results. For instance, the description of the dissociation of H2 (i.e. the

behavior at large internuclear distance), where one electron must be located at one

hydrogen atom, can logically not be obtained by the use of a system which places

both electrons in the same spatial orbital. Therefore the choice of method is always

a very important point in HF calculations [68].Kohn states several M = p5 with

3 ≤ p ≤ 10 parameters for an output with adequate accuracy in the investigations

of the H2 system [69]. For a system with N = 100 electrons, the number of

parameters rises to,

M = p3N = 3300to10300 ≈ 10150to10300 (2.34)

According to the equation (2.34), energy reduction would have to be done in a space

with at least 10150 dimension, which is well above current computer capabilities. As

a result, HF methods are limited to situations involving a modest number of electron

(N ≈ 10), This barrier commonly referred to as the exponential wall because of the

exponential component in equation (2.34) [69]. Since a many electron wave function

cannot be described entirely by a single Slater determinant, the energy obtained

by HF calculations is always larger than the exact ground state energy. The most

accurate energy obtainable by HF-methods is called the Hartree-Fock-limit. The
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Hartree-Fock-limit is the most precise energy that can be calculated using HF-

methods. Since a many electron wave function cannot be described entirely by a

single Slater determinant, the energy obtained by HF calculations is always larger

than the exact ground state energy. The most accurate energy obtainable by HF-

methods is called the Hartree-Fock limit. The difference between EHF and Eexact is

called correlation energy and can be denoted as,

EHF
corr = Emin − EHF . (2.35)

Despite the fact that Ecorr is usually small against Emin, as in the example of a N2

molecule where

EHF
corr = 14.9eV < 0.001.Emin, (2.36)

For instance, the experimental dissociation energy of the N2 molecule is

Ediss = 9.9eV < Ecorr, (2.37)

which corresponds to a large contribution of the correlation energy to relative ener-

gies such as reaction energies which are of particular interest in quantum chemistry.

The main contribution to the correlation energy arises from the mean field approxi-

mation used in the HF-method. That means one electron moves in the average field

of the other ones, an approach which completely neglects the intrinsic correlation of

the electron movements. To get a better understanding what that means, one may

picture the repulsion of electrons at small distances which clearly cannot be covered

by a mean-field approach like the Hartree-Fock method.
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Chapter 3

Density Functional Theory

3.1 Overview

Computational methods have now become an essential aspect of the scientific world,

particularly in the calculation of issues. Computers and numerical approaches are

important for issues involving enormous quantities of particles,data and so on that

cannot be solved analytically. Additionally, it requires a large amount of funding

or resources for the experiment. DFT is a type of ab initio method that is often

referred to as a computational quantum mechanical modeling method. The method

is well-known at the matter of quantum chemistry, condensed matter physics, ma-

terials science et cetera. The application of this method starts with remedying the

many body Schrödinger equation equation problem. However, DFT is more than

just another method to solve the Schrödinger equation equation. DFT provides an

entirely distinct approach to any interacting problem, translating it perfectly to more

simple non-interacting problem. This methodology is broadly utilized for resolving

a variety of issues, with the electronic structure problem being the most common

[70]. In DFT, the electron density is used as the fundamental factor, instead of the

wave-function. Another method for solving the many-body Schrödinger equation

equation is the Hartree-Fock approach, that use wave-functions to describe the elec-
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tronic figure of atoms and substance. However, this methods has several drawbacks,

including a high cost of calculation time for investigating big systems. But DFT has

demonstrated superior accuracy at a reduced computing cost, making it superior

to all other approaches. This facts makes DFT the most useful method to ana-

lyze electronic structure. Walter Kohn with his co-workers developed this “Density

functional theory” and find out the way of using the electron density to resolve the

Schrödinger equation equation. For his timeworn work, he got novel prize in 1998

[69]. The chapter describes their work in broad strokes, beginning with fundamental

quantum physics, its issues, and how DFT resolves them.

3.2 The electron density

The electron density (forN electrons) as the basic variable of density fuctional theory

is defined as [71] In electronic system, the number of electron per unit volume in

a given state is the electron density for a state designated by n(r⃗). Its formula in

terms of ψ is

n(r⃗) = N
∑
s1

∫
dx⃗2...

∫
dx⃗Nψ

∗(x⃗1, x⃗2, ...x⃗N)ψ(x⃗1, x⃗2, ..., x⃗N). (3.1)

The electron density can also be described as a measurably obserable quantity based

simply on spatial coordinates if the spin coordinates are further neglected [69]

n(r⃗) = N

∫
dr⃗2...

∫
dr⃗Nψ

∗(r⃗1, r⃗2, ..., r⃗N)ψ(r⃗1, r⃗2, ..., r⃗N) (3.2)

with, for instance, an X-ray diffraction measurement. It must be confirmed that a

method employing the electron density as a variable actually contains all necessary

information about the system before it is presented. That entails, specifically, that

it must include details on the electron number n as well as the external potential

denoted by V̂ . By integrating the electron density over the spatial variables, one

may get the total number of electrons.

N =

∫
dr⃗n(r⃗). (3.3)
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For an atom in its ground state the density decreases monotonically away from the

nucleus [72]. The electron density at any atomic nucleus in an atom, molecule, or

solid has a finite value. Hohenberg and Kohn pointed out that if one knows the

density of the ground state of a many electron system, one can deduce from it the

external potential in which the electrons reside, up to an overall constant [60]. It

must be kept in mind that the only ways in which two many electron problem can

differ are in the external potentials V̂ and in the number of electrons that reside

in the potentials. According to this results, both of these external parameters are

determined by the electron density, so one can say that the density completely de-

termines the many body problem. This statement is surprising, because the density

is a real function of a single spatial variable while complete quantum mechanical

wave function needs N variables for its description. The starting point of the theory

is the observation of Hohenberg and Kohn that electron density contains in principle

all the information contained in a many electron wave function.

3.3 Thomas-Fermi model

The assumptions stated by Thomas are that, electrons are distributed uniformly in a

six dimentional phase space for the motion of an electron at the rate of two for each

h3 of volume and that there is an effective potential field that is itself determined

by the nuclear charge and this distribution of electrons. The Thomas Fermi formula

for electron density can be derived from these assumptions [60]. Let us consider

the space devided into many small cubes, each of side l and volume δV = l3 , each

containing some fixed number of electrons δN and we assume that the electrons in

each shell behave like indipendent fermions at the temperature 0 K, with the cells

independent of one another. The energy level of a particle in a three dimensional

infinite well are given by the formula.

ϵ(nx, ny, nz) =
h3

8ml2
(n2

x + n2
y + n2

z) (3.4)

=
h3

8ml2
R2 (3.5)
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Where nx, ny, nz = 1, 2, 3... and the second equality defines by the quantity R. For

high quantum numbers, that is, for large R, the number of distinct energy levels

with energy smaller than ϵ can be approximated by the volume of one octant of a

spherical with radius R in the space nx, ny, nz. This number is,

ϕ(ϵ) =
1

8

(
43

3

)
(3.6)

=
π

6

(
8ml2ϵ

h2

) 3
2

(3.7)

The number of energy levels between ϵ and ϵ+δϵ is accordingly

g(ϵ)∆ϵ = ϕ(ϵ+ δϵ)− ϕ(ϵ) (3.8)

=
π

4

(
8ml2ϵ

h2

) 3
2

ϵ
1
2 + ϕ(δϵ)2 (3.9)

where the function g(ϵ) is the density of states at energy ϵ. To compute the total

energy for the cell with electrons, we need the probability for the state with energy

to be occupied which we call f(ϵ). This is the Fermi Dirac distribution.

f(ϵ) =
1

1 + expβ(ϵ−µ)
(3.10)

where ϵf is the Fermi energy. All the states energy smaller than ϵf are occupied

and those with energy greater than ϵf are occupied. The Fermi energy ϵf is the zero

temperature limit of the chemical potential µ. Now we find the total energy of the

electrons in this cell by summing the contributions from the different energy states:

∆E = 2

∫
ϵf(ϵ)g(ϵ)dϵ (3.11)

= 2

∫
ϵf(ϵ)

π

4

(
8ml2

h2

) 3
2

ϵ
1
2dϵ (3.12)

=
8π

5

(
2m

h2

) 3
2

l3ϵ
5
2
f (3.13)
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where the factor 2 enters because each energy level is doubly occupied by one electron

with spin and another with spin β. The fermi energy Ef is related to the number

of electrons ∆N in the cell through the formula,

∆N = 2

∫
f(ϵ)g(ϵ)dϵ

=
8π

3

(
2m

h2

) 3
2

l3ϵf
3
2

(3.14)

Eleminating ϵf from 3.13 and 3.14 we have,

∆E =
3

5
∆NEf (3.15)

=
3h2

10m

(
3

8π

) 2
3

l3
(
∆N

l3

) 5
3

(3.16)

Equation(3.16) is a relation between total kinetic energy and the electron density

n = ∆N
l3

= ∆N
∆V

for each cell in the space. Adding the contribution from all cells we

find the total kinetic energy to be, now reverting to atomic units,

TTF [n] = Cf

∫
n

5
3 (r⃗)dr⃗ (3.17)

Where

Cf =
3

10
(3π2)

2
3 = 2.871 (3.18)

Here, we first come across the LDA [60] one of the most significant concepts in

contemporary density functional theory. By using locally applicable relations suited

for a homogeneous electronic system, electronic characteristics are approximated as

functions of the electron density. In terms of electron density, the energy formula

for an atom is

TTF [n(r⃗)] = CF

∫
n

5
3 (r⃗)dr⃗ − Z

∫
n(r⃗)

r⃗
dr⃗ +

1

2

∫ ∫
n(r⃗1)n(r⃗2)

|r⃗1 − r⃗2|
dr⃗1dr⃗2 (3.19)

This is the energy functional of Thomas-Fermi theory of atoms. The method became

considered as an overly simplified model of little real significance for quantitative
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predictions in atomic, molecular, or solid state physics because the accuracy for

atoms is not as high with this model as it is with other methods.

3.4 The Hohenberg-Kohn (HK) theorems

Density functional theory (DFT) is the most widely used many-body approach for

electronic structure calculations and has significantly impacted on modern science

and engineering. DFT is made possible by the existance of two ingeniously simple

theorems put forward and proven by Hohenberg and Kohn in 1964. The Hohenberg-

Kohn theorems which have become a basic tool for the study of electronic structure

of matter. Basically, any system that involves electron.

3.4.1 The HK theorem I

For any system of interacting particles in an external potential Vext(r⃗), the density

is uniquely determined (in other words, the external potential is a unique functional

of the density).

Proof of the HK theorem I

Assume that there exist two potentials Vext(r⃗) and V
′
ext(r⃗) differing by more than a

constant and giving rise to the same ground state density, n0(r⃗). Obviously, Vext(r⃗)

and V ′
ext(r⃗) belong to distinct Hamiltonians Ĥ and Ĥ ′, which give rise to distinct

wave functions ψ and ψ′. Because of the variational principle, no wave function can

give an energy that is less than the energy of ψ for Ĥ. That is

E0 < ⟨ψ′|Ĥ|ψ′⟩

< ⟨ψ′|Ĥ ′|ψ′⟩+ ⟨ψ′|Ĥ − Ĥ ′|ψ′⟩

< E ′
0 +

∫
n0(r⃗)[Vext(r⃗)− V ′

ext(r⃗)]dr⃗

(3.20)
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Similarly

E ′
0 < ⟨ψ|Ĥ|ψ⟩

< ⟨ψ|Ĥ|ψ⟩+ ⟨ψ|Ĥ ′ − Ĥ|ψ⟩

< E0 +

∫
n0(r⃗)[V

′
ext(r⃗)− Vext(r⃗)]dr⃗.

(3.21)

Adding eq.(3.20) and eq.(3.21) lead to the contradiction

E0 + E ′
0 < E0 + E ′

0 (3.22)

which is clearly a contradiction. Thus, the theorem has been proven by reduction

absurdum.

3.4.2 The HK theorem II

A universal functional F [n(r⃗)] for the energy E[ψ′] can be defined in terms of the

density, The exact ground state is the global minimum value of this functional.

Proof of the HK theorem II

Since the external potential is uniquely determined by the density and since the

potential in turn uniquely (except in degenerate situations) determines the ground

state wavefunction, all the other observables of the system such as kinetic energy are

uniquely determined. Then one may write the energy as a functional of the density.

The universal functional F [n(r⃗)] can be written as

F [n(r⃗)] ≡ T [n(r⃗)] + Eint[n(r⃗)] (3.23)

where T [n(r⃗)] is the kinetic energy and Eint[n(r⃗)] is the interaction energy of the

particles. According to variational principle, for any wavefunction ψ′, the energy

functional E[ψ′]:

E[ψ′] ≡ ⟨ψ′|T̂ + V̂int + V̂ext|ψ′⟩ (3.24)

has its global minimum value only when ψ′ is the ground state wavefunction ψ0

with the constraint that the total number of the particle is conserved. According

to HK theorem I, ψ′ must correspond to a ground state with particle density n′(r⃗)
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and external potential V ′
ext(r⃗), then E[ψ′] is a functional of n′(r⃗). According to

variational principle:

E[ψ′] ≡ ⟨ψ′|T̂ + V̂int + V̂ext|ψ′⟩

= E[n′(r⃗)]

=

∫
n′(r⃗)V ′

ext(r⃗)dr⃗ + F [n′(r⃗)]

> E[ψ0]

=

∫
n0(r⃗)Vext(r⃗)dr⃗ + F [n0(r⃗)]

= E[n0(r⃗)]

(3.25)

Thus the energy functional E[ψ′] ≡
∫
n(r⃗)Vext(r⃗)dr⃗ + F [n(r⃗)] evaluated for the

correct ground state density n0(r⃗) is indeed lower than the value of this functional

for any other density n(r⃗). Therefore by minimizing the total energy functional of

the system with respect to variations in the density n(r⃗), one would find the exact

ground state density and energy. This functional only determines ground state

properties, it doesn’t provide any guidance concerning excited states.

3.5 Kohn-Sham (KS) equation

An inventive indirect method of monoelectronic equation for the kinetic-energy

functional T [n(r⃗)] was developed by Kohn and Sham in 1965 as Kohn-Sham (KS)

method. Kohn and Sham proposed introducing orbitals into the problem in such

a way that the kinetic energy can be computed simply to good accuracy, leaving a

small residual correction that is handled separately. It is convenient to begin with

the exact formula for the ground-state kinetic energy,

T =
N∑
i

ai⟨ψi| −
1

2
∇2|ψi⟩ (3.26)

where, ψi and ai respectively, natural spin orbitals and their occupation numbers.

We are assured from the Hohenberg-Kohn theory that this T is a functional of the
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total electron density.

n(r⃗) =
N∑
i

ai|ψi(r⃗)|2 (3.27)

Kohn and Sham showed that one can built a theory using simpler formulas, namely,

Ts[n] =
N∑
i

⟨ψi| −
1

2
∇2|ψi⟩ (3.28)

and

n(r⃗) =
N∑
i

|ψi(r⃗)|2 (3.29)

This representation of kinetic energy and density holds true for the determinantal

wave function that exactly describes N non-interacting electrons. In analogy with

the Hohenberg-Kohn defination of the universal functional FHK [n], Kohn and Sham

invoked a corresponding non-interacting reference system, with the Hamiltonian,

Ĥs =
N∑
i

(
1

2
∇2
i ) +

N∑
i

νs(r⃗) (3.30)

in which there are no electron-electron repulsion terms and for which the ground

state electron energy is exactly n. For this system, there will be an exact determi-

nantal ground-state wave function,

ψs =
1√
N !
det[ψ1ψ2 . . . ψN ] (3.31)

where ψi are the N lowest eigenstates of the one-electron Hamiltonian ĥs:

ĥsψi = [−1

2
∇2 + νs(r⃗)]ψi = ϵmeψi (3.32)

The kinetic energy is Ts(n) given by eq.(3.28).

Ts[n] = ⟨ψs|
N∑
i

(−1

2
∇2
i )|ψi⟩ =

N∑
i=1

⟨ψi| −
1

2
∇2|ψi⟩ (3.33)

The quantity Ts[n], although uniquely defined for any density, is still not the exact

kinetic energy functional. Kohn-Sham set up a problem of interest in such a way
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that Ts[n] is it’s kinetic energy component. To produce the desired separation out

of Ts[n] as the kinetic energy component, we write the equation as

F [n] = Ts[n] + J [n] + Exc[n]. (3.34)

Where

Exc[n] = T [n]− Ts[n] + Vee[n]− J [n] (3.35)

Here the quantity Exc[n] is called exchange-correlation energy. It contains the differ-

ence between T and Ts and non-classical part of Vee[n]. The Euler equation becomes

µ = νeff (r⃗) +
δTs[n]

δn(r⃗)
(3.36)

Where KS effective potential is defined by

νeff (r⃗) = ν(r⃗) +
δJ [n]

δn(r⃗)
+
δExc[n]

δn(r⃗)

= ν(r⃗) +

∫
n(r⃗′)

|r⃗ − r⃗′|
dr′ + νxc(r⃗)

(3.37)

with the exchange-correlation potential

νxc(r⃗) =
δExc[n]

δn(r⃗)
(3.38)

For a system of non-interacting electrons moving in the external potential νs(r⃗) =

νeff (r⃗). Therefore, for a given νeff (r⃗), one obtains the n(r⃗) that satisfies eq.(3.38)

simply by solving the N -one electron equations,

[−1

2
∇2 + νeff (r⃗)]ψi = ϵmeψi (3.39)

where ϵme is the eigenvalue of monoelectron equation and setting

n(r⃗) =
N∑
i

|ψi(r⃗)|2 (3.40)

Eq.(3.37) and eq.(3.40) are celebrated Kohn-Sham equations.
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The Kohn-Sham equations derived above that are summerized in the flow chart in

Figure 3.1. They are a set of Schrödinger like independent particle equations which

must be solved subject to the condition that the effective potential νeff and the

density n(r⃗) are consistent. After solving Kohn-Sham equations, we will have a set

of single electron wave functions. These wave functions can be used to calculate

the new electron density. As an input, the new electron density is fed into the next

cycle. Finally, after each iteration, compare the differences in calculated electron

densities. If the difference in electron density between consecutive iterations is less

than a suitably determined convergence threshold, the solution of the Kohn-Sham

equations is deemed self-consistent. The predicted electron density has now been

converted to the ground state electron density, which can be used to compute the

total energy of the system.

3.5.1 Solving Khon-Shan equation

In a condensed matter system the KS equation gives a way to obtain the exact

density and energy of the ground state. The process starts with an initial electron

density n(r), usually a superposition of atomic electron density, then the effective

KS potential νeff is calculated and the KS equation is solved with single particle

eigenvalues and wave functions, a new electron density is then calculated from the

wave functions. This is usually done numerically through some self consistent iter-

ation as shown in above flowchart. Self-consistent condition can be the change of

total energy or electron density from the previous iteration or total force acting on

atoms is less than some chosen small quantity, or a combination of these individual

conditions. If the self-consistency is not achieved, the calculated electron density

will be mixed with electron density from previous iterations to get a new electron

density. A new iteration will start with the new electron density. This process

continues until selfconsistency is reached. After the self-consistency is reached, var-

ious quantities can be calculated including total energy, forces, stress, eigenvalues,

electron density of states, band structure, etc..
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Figure 3.1: Flowchart of self-consistency loop for solving Kohn-Sham equation

3.6 The exchange-correlation (XC) functional

The exchange-correlation functional is at the core of density functional theory (DFT)

that determines the accuracy of DFT in describing the interactions among elec-

trons/ions in solids and molecules. The crucial quantity in the Kohn-Sham approach

is the exchange-correlation energy which is expressed as a functional of the density

Exc[n⃗]. The exchange-correlation potential for a homogeneous electron gas (HEG)

at the electron density observed at position r⃗. This approximation uses only the

local density to define the approximate exchange-correlation functional, hence called

local density approximation (LDA) and widely used

ELDA
xc (r⃗) =

∫
n(r⃗ϵ)homxc n(r⃗)dr⃗

=

∫
[n(r⃗ϵ)homx n(r⃗) + n(r⃗ϵ)homc n(r⃗)]dr⃗

= ELDA
xc [n(r⃗)]

(3.41)
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The LDA is very simple, corrections to the exchange-correlation energy due to the in-

homogeneities in the electronic density are ignored. Because of exchange-correlation

energy of inhomogeneous charge density can significantly different from HEG result.

This leads to development of various generalized-gradient approximation (GGA). In

the GGA approximation, the local electron density and local gradient in the elec-

tron density are included in the exchange and correlation energies. One example of

GGA functional used in DFT is the Perdew-Burke Ernzerhof (PBE) functional. It

is formulated as

EPBE
xc = ELDA

xc + EPBE
c . (3.42)

Where, EPBE
xc is the exchange correlation energy calculated using the PBE func-

tional. ELDA
xc is the exchange correlation energy calculated using LDA approxima-

tion and EPBE
c is the correlation energy term specific to the PBE functional.

The exchange correlation potential was solved by GGA functional that understi-

mates tha band gap value. Therefore, the modified Becke-Johnson exchange poten-

tial and LDA correlation by Trans and Blaha in 2009 (TB-mBJ) allows the calcula-

tion of band gaps with an accuracy similar to very expensive GW calculations.

3.7 Local Density Approximation (LDA)

The Khon Sham equation while exactly incorporating the kinetic energy Ts[n], still

leave the exchange correlational functional Exc[n] unsetteled. In Khon Sham equa-

tion let us introduce the local density approximation proposed by Khon and Sham.

The kinetic energy Ts[n] is regorously treated in the Kohn Sham schame, we can

use the uniform electron gas formula solely for the unknown part of the rest of the

energy functional. Thus we introduce the local density approximation (LDA) for

exchange and correlation energy.

EPBE
xc [n] =

∫
n(r⃗)ϵxc(n)dr⃗ (3.43)

Where ϵxc[n] indicates the exchange and correlation energy per particle of a uniform

electron gas of density n. The corresponding exchange correlation potential then
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becomes,

V LDA
xc (r⃗) =

EPBE
xc [n]

δn(r⃗)

= ϵxc(n(r⃗)) + n(r⃗)
Exc[n]

δn(r⃗)

(3.44)

and the Khon Sham equations read, This self consistent solution defines the KS local

density approximation, which is the literature is usually simply called Local Density

Approximation (LDA) method. The function ϵxc[n] can be devided into exchange

and correation contributions,

ϵxc(n) = ϵx(n) + ϵc(n) (3.45)

The exchange part is already known given by the Dirac exchange energy functional.

ϵx(n) = −Cxn
1
3 (r⃗) (3.46)

where

Cx =
3

4
(
3

π
)
1
3 (3.47)

3.8 Local Spin Density Approximation (LSDA)

The spin density functional theory is the necessary generalization for systems in the

presence of an external magnetic field. It is also exceedingly important for systems

in the absence of a magnetic field, because it allows one to build more physics into

the approximate exchange-correlation functional through its spin dependence. In

the presence of a magnetic field B(r⃗) that acts only on the spins of the electrons,

the Hamiltonian of the system becomes,

H = −1

2

N∑
i

∇2
i +

N∑
i

V (r⃗) +
N∑
i<1

1

r⃗ij
+ 2βe

N∑
i

B(⃗r).S⃗i (3.48)

Where, βe =
eℏ
2mc

is the Bohr magneton and S⃗i is the electron angular momentum

vectorfor the itℏ electron. The added magnetic interaction is still a one electron

operator, just like the nuclear potential V (r⃗). We can combine terms in the following
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convenient way:

V̂ =
N∑
i

V (r⃗i) + 2βe

N∑
i

B(r⃗).S⃗i (3.49)

=

∫
v(r⃗)n̂(r⃗)dr⃗ −

∫
B(r⃗)m̂(r⃗)dr⃗ (3.50)

where n̂(r⃗) is the operator for electron density,

n̂(r⃗) =
N∑
i

δ(r⃗ − r⃗i) (3.51)

and and m̂(r⃗) is the operator for the electron magnetization density,

m̂(r⃗) = −2βe

N∑
i

Siδ(r⃗ − r⃗i) (3.52)

Both n̂(r⃗) and m̂(r⃗) are local operators. The expectation value of V̂ for the state

|ψ⟩ is given by,

⟨ψ|V̂ |ψ =

∫
v(r⃗)n(r⃗)dr⃗ −

∫
B(r⃗)m(r⃗)dr⃗ (3.53)

where the electron density is given by,

n(r⃗) = ⟨ψ|n̂(r⃗)|ψ⟩ (3.54)

and the magnetization density by,

m(r⃗) = ⟨ψ|m̂(r⃗)|ψ⟩ (3.55)

We shall discuss only the simple case of z-direction b(r⃗). We then have,

⟨ψ|V̂ |ψ⟩ =
∫
v(r⃗)n(r⃗)dr⃗ −

∫
b(r⃗)m(r⃗)dr⃗ (3.56)

where

m(r⃗) = −2βe⟨ψ|
N∑
i

Sz(i)δ(r⃗ − r⃗i)|ψ⟩

= βe[n
β(r⃗)− nα(r⃗)]

(3.57)
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We obtain the spin density functional theory by breaking the minimum search for

the ground-state energy into two steps. Namely,

E0 = min
ψ

⟨ψ|T + Vee +
N∑
i

U(r⃗i) + 2βe

N∑
i

b(r⃗i).Sz(i)|ψ⟩ (3.58)

= min
nα,nβ

{ min
ψ→nα,nβ

⟨ψ|T + Vee⟩+
∫
[v(r⃗)n(r⃗)−

∫
b(r⃗)m(r⃗)]dr⃗} (3.59)

= min
nα,nβ

{F [nα, nβ] +
∫
[(V (r⃗)− βeb(r⃗))n

α(r⃗) + βeb(r⃗))n
β(r⃗)]dr⃗} (3.60)

where

F [nα, nβ] = min
ψ→nα,nβ

⟨ψ|T + Vee|ψ⟩ (3.61)

This provides constrained-search formulation of the universal functional F [nα, nβ].

The functional F [nα, nβ] searches all ψ that yield the input nα(r⃗) and nβ(r⃗), then

F [nα, nβ] assumes the minimum of ⟨F +Vee⟩. The last equality of (3.61) is the basis

of the spin-density-functional theory: nα and nβ are all that are needed to describe

the ground state of the many-electron system in the presence of a magnetic field

b(r⃗). However, F [nα, nβ] is unknown, and approximation is necessary for the theory

to be implemented. The Kohn-Sham method can now be introduced to rigorously

handle the kinetic energy contribution to F [nα, nβ],

F [nα, nβ] = Ts[n
α, nβ] + J [nα + nβ] + Exc[n

α, nβ] (3.62)

where Ts[n
α, nβ] is the Kohn-Sham kinetic-energy functional corresponding to a

system of non-interacting electrons with densities nα and nβ and Exc[n
α, nβ] is the

exchange correlation energy functional. A constrained search definition of Ts can

also be given,

Ts[n
α, nβ] = min

∑
iα

niα

∫
dr⃗ϕ∗

iα(r⃗)(
1

2
∇2)ϕiαr⃗ (3.63)

where the minimization is over the set of niα and ϕiα, with constraints,

∑
i

niα|ϕiα(r⃗)|2 = nα(r⃗) (3.64)
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i

niβ|ϕiβ(r⃗)|2 = nβ(r⃗) (3.65)

We may express the energy (3.55) as a functional of the orbitals ϕiα,

E[nα, nβ] =
∑
iα

niα

∫
dr⃗ϕ∗

iα(r⃗)(−
1

2
∇2)ϕiαr⃗ + J [nα + nβ] + Exc[n

α, nβ]

+

∫
[(V (r⃗) + βeb(r⃗))n

α(r⃗) + (V (r⃗)− βeb(r⃗))n
β(r⃗)]d(r⃗)

(3.66)

The variational search for the minimum of E[nα, nβ] can then be carried out through

orbitals, subject to normalization constraints,

∫
ϕ∗
iα(r⃗)ϕiα(r⃗)dr⃗ = 1 (3.67)

The resulting Kohn-Sham equations are,

ĥαeffϕiα(r⃗) = [−1

2
∇2 + V α

eff ]ϕiα(r⃗) = ϵiαϕiα(r⃗) (3.68)

and

ĥβeffϕjβ(r⃗) = [−1

2
∇2 + V β

eff ]ϕjβ(r⃗) = ϵjβϕjβ(r⃗) (3.69)

where the spin dependent effective potentials are,

vαeff (r⃗) = v(r⃗) +

∫
n(r⃗)

|r⃗ − r⃗′ |dr⃗
+
δExc[n

α, nβ]

δnα(r⃗)
+ βeb(r⃗) (3.70)

vβeff (r⃗) = v(r⃗) +

∫
n(r⃗)

|r⃗ − r⃗′ |dr⃗
+
δExc[n

α, nβ]

δnβ(r⃗)
+ βeb(r⃗) (3.71)

In equations (3.65) and (3.66), the number of electrons with α spin and β spin,

Nα =

∫
nα(r⃗)dr⃗ (3.72)

and

Nβ =

∫
nβ(r⃗)dr⃗ (3.73)
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need also to be varried to achieve minimum total energy under the constraint,

N = Nα +Nβ (3.74)

With the spin-polarized Kohn-Sham equations, the kinetic energy is handled exactly

and only the exchange-correlation energy remains to be determined. The exchange-

correlation contribution can be separated into exchange and correlation pieces,

Exc[n
α, nβ] = Ex[n

α, nβ] + Ec[n
α, nβ] (3.75)

where the exchange part is defined as,

Ex[n
α, nβ] = −1

2

∫ ∫
1

r⃗12
{|nα,α1 (r⃗1, r⃗2)|2 + |nβ,β1 (r⃗1, r⃗2)|2}dr⃗1r⃗2 (3.76)

with

nα,α1 (r⃗1, r⃗2) =
∑
i

niαϕiα(r⃗1)ϕ
∗
iα(r⃗2) (3.77)

nβ,β1 (r⃗1, r⃗2) =
∑
i

niβϕiβ(r⃗1)ϕ
∗
iβ(r⃗2) (3.78)

The niα and ϕiα are those giving the Kohn-Sham kinetic energy, they are determined

by pα and pβ.

Ex[n
α, nβ] =

1

2
Ex[n

α, nα] +
1

2
Ex[n

β, nβ] (3.79)

=
1

2
E0
x[2n

α] +
1

2
E0
x[2n

β] (3.80)

where

E0
x[n] = Ex[

1

2
n,

1

2
n] (3.81)

The Dirac local density approximation (LDA) for exchange is for the spin-compensated

case. Thus from above equations, we obtain the local spin-density approximation

(LSDA) for the exchange energy functional,

ELSDA
x [nα, nβ] = 2

1
3Cx

∫
[(nα)

4
3 + (nβ)

4
3 ]dr⃗ (3.82)

33



Density Functional Theory

3.9 Generalized Gradient Approximation (GGA)

The LDA neglects the inhomogeneties of the real charge density which could be

very different from the HEG. The XC energy of inhomogeneous charge density can

be significantly different from the HEG result. This leads to be the development of

verious generalized-gradient approximations (GGA) which include density gradient

corrections and higher spatial derivatives of the electron density and give better

result than LDA in many cases. Three most widely used GGA’s are the from

proposed by Becke [73], Perdew et al. [74], Burke and Enzerhof [75]. The definition

of the XC energy functional of GGA is the generalized form in the equation of LSDA

to include corrections ,

ELSDA
XC [n↓(r), n↑(r)] =

∫
n(r)ϵhomXC [n↓(r), n↑(r)]dr (3.83)

Where XC energy density ϵhomXC (n(r)) is a function of the density alone and is

composed into exchange energy density ϵhomXC (n(r)) and correlation energy density

ϵhomC (n(r)) . So thet the XC energy functional is decomposed into exchange energy

function ELDA
XC (n(r)) linearly. From density gradient ∇(r⃗) as,

EGGA
XC [n↓(r), n↑(r)] =

∫
n(r)ϵhomXC [n↓(r), n↑(r), |∇ ↑ (r)|, |∇ ↓ (r)|, ...]dr

=

∫
n(r)ϵhomX n(r)FXC [n↓(r), n↑(r), |∇ ↑ (r)|, |∇ ↓ (r)|, ...]dr

(3.84)

Where FXC is dimensionless and ϵhomXC n(r) is the exchange energy density of the un-

polarized HEG. FXC can be decomposed linearly into exchange contribution FXC

= FX + FC . Generally GGA works better than LDA, in pridicting binding en-

ergy of molecules and bond length, crystal lattice constants, especially the system

where charge density varried rapidly. In case of ionic crystall, GGA overcorrects

LDA results where the lattice constants of LDA fit well than GGA. But in case of

transition metal oxides and rare-earth element, both LDA and GGA perform badly.

This drawback leads to approximations beyond LDA and GGA.
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3.10 LDA+U method

Strongly correlated system usually contain transition metal or rare-earth metal ions

with partially filled d or f shells. Because of the orbital-independent potentials in

LSDA and GGA, they cannot properly describe such systems. The total energy in

LSDA+U [76] method is given by,

ELDA+U
tot [ρσ(r), nσ] = ELSDA[ρσ(r)] + EU [nσ]− Edc[n(r)] (3.85)

where, σ = spin indexes ρ(r) = electron density for spin- electrons n = density

matrix of f or d electron for spin-σ electrons ELSDA[ρσ(r)] = standard LSDA energy

functional EU [n(r)] = electron-electron coulomb interaction energy. The last term

is double counting term which remove the average LDA energy contribution of d or

f electrons from the LDA energy

Edc[n(r)] =
1

2
UN(N − 1)− 1

2
J [N↑(N↑ − 1) +N↓(N↓ − 1)] (3.86)

where, N = N↑ +N↓. U and J are coulomb and exchange parameters. If exchange

and non sphericity is neglected then,

ELDA+U
tot = ELDA +

1

2
U
∑
i ̸=1

ninj −
1

2
UN(N − 1) (3.87)

The orbital energies ϵi are derivative of above equation with respect to orbital oc-

cupations ni : Forni = 1, LDA orbital energiesare shifted by −U
2
and by U

2
and

by for unoccupied orbitals( ni = 0), resulting the upper and lower Hubbard bands,

which opens a gap at the Fermi energy in transition metal oxides. In case of double

counting term, it has two different tretement: AMF and FLL. The former is most

suitable for small U system [77] and the letter for large U system [78]. The energies

for double counting is given by [79],

EAMF
dc =

1

2
UN2 − U + 2lJ

2l = 1

1

2

∑
σ

N2
σ (3.88)
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and

EAMF
dc =

1

2
UN(N − 1)− 1

2
J
∑
σ

Nσ(Nσ−1) (3.89)

where, N
2(2l+1)

= average occupation of the correlated orbitals Nσ

2l+1
= average occupa-

tion of a single spin of the correlated orbital.
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Results and Discussion

4.1 Computational details

In our calculation, to compute the optoelectronic, thermoelectric and mechanical

properties of K2YAgBr6 under pressure we employed the full potential linearized aug-

mented plane wave (FP-LAPW) method within the DFT implemented in WIEN2k

code [80]. We optimized the lattice parameters of K2YAgBr6 in the simple cubic

phase with space group Fm3̄m (225) by using Birch-Murnaghan’s equation of state

[81]. The band structures and density of states are calculated by using Perdew-

Burke-Ernzerhof generalized gradient approximation (PBE-GGA) [82, 83]. In all

the calculations, some of the parameters were kept constant in reciprocal lattices,

such as the Gaussian factor Gmax = 16 (a.u)−1, and angular momentum vector lmax

= 10. For non-overlapping spheres, the radii of the muffin-tin for all calculations are

chosen to be 2.5, 1.9, 2.05, and 1.76 a.u. for K, Y, Ag and Br respectively. An ad-

ditional parameter that is obtained by multiplying the cutoff parameter KmaxRMT

= 8 was used, where Kmax is the plane wave cut-off for reciprocal lattice vector

and RMT is the muffin-tin radius. The first Brillouin Zone was sampled by using

the Monkhorst-Pack [84] method using the k-point mesh was set as 15 Ö 15 Ö 15

and 20 Ö 20 Ö 20 for electronic and optical computations respectively. The limit
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of energy convergence for the iteration process was set to 10−5 Ry and the total

charge are 10−4 e. In order to compute the elastic constants, we used the Charpin’s

technique as it is implemented in WIEN2k [85]. According to Charpin’s method,

the elastic behavior of a material with a perfectly cubic structure can be effectively

characterized by three distinct elastic constants C11, C12, and C44. Finally, The

thermoelectric properties are computed using BoltzTraP code that employs rigid

band approximation and classical Boltzmann transport theory [86].

4.2 Structural properties

The double peroveskite compound K2YAgBr6 has face-centered cubic structure with

the space group Fm3̄m (225) of four atoms per unit cell. The crystal structure

of K2YAgBr6 double perovskite is illustrated in Figure 4.1. The atomic position

in the unit cell are K (0.25, 0.25, 0.25), Y (0, 0, 0), Ag (0.5, 0.5, 0.5) and Br

(0.2475, 0, 0). The corresponding Wyckoff sites are 8c for K, 4a for Y , 4b for Ag

and 24e for O. To find the optimized ground states of the considered material, the

Figure 4.1: Schematics representation of the crystal structure of K2YAgBr6.

energy versus volume of a unit cell of the crystal was calculated, based on the Birch-

Murnaghan’s thermodynamic of state equation [87]. This graph determines the

ground state energy corresponding to minimum volume, which provides information

about the optimized lattice constant. The energy versus volume optimization curve
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is presented in Figure 4.2. We investigate the variation of lattice parameters for

K2YAgBr6 double perovskite under different hydrostatic pressures upto 150 GPa.

The calculated lattice parameter at 0 GPa in this study exhibits very well consisten

with previous work. The influence of applied hydrostatic pressure on lattice is

exhibited from Table 4.1, it is observed that the values of lattice parameter decrease

in a smooth way with increase of pressure, which implies that the space between

atoms is getting reduced. As a result, repulsive influence between atoms become

stronger, which conducts to the hardness of crystal compression under elevated

pressure. The thermodynamic and structural stability can be estimated through

Figure 4.2: The calculated energy versus volume optimization curve of the K2YAgBr6 .

the enthalpy of formation (∆Hf ) eV and tolerance factor [88]. Statistical studies

on double perovskites structure conducted by Li et al. [89,90], have revealed that for

a stable double perovskite 0.71 < tG < 1. Moreover, it has been shown that 0.89 <

tG < 1 refer to a perfectly stable cubic structure, while for those double perovskites

with 0.71 < tG < 0.89, a tetragonal or an orthorhombic crystal structure is more

probable [91]. For K2YAgBr6 the tolerance factor is found to be 0.94 [91] calculated

by the equation;

τG =
RK +RBr√

2(
RY +RAg

2
+RBr)

(4.1)
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Where RK , RBr, RAg and RBr refer to the ionic radii of K, Y, Ag, Br atoms respec-

tively. The thermodynamic stability of halide double perovskite can be checked by

the expression given below:

∆Hf = ETotal(K2YAgBr6) - aEK − bEY − cEAg − dEBr (4.2)

The factors ETotal (K2YAgBr6), aEK , bEY , cEAg, dEBr are the total energy and

energy of the K atoms, along with energies of Y, Ag and Br atoms. The value of

∆Hf is −1.68 eV [91]. K2YAgBr6 is stable, as verified by negetive values of ∆Hf

(eV). This means that during the formation of this compound, energy is released

which stabilizes the product.

Table 4.1: Variation of lattice constants and band gaps of K2YAgBr6 under hydrostatic

pressure up to 150 GPa

Pressures lattice constants (Å) Band Gap(eV)
(GPa) Our work Other work Our work Other work

0 11.26 11.27a 3.07 3.3a

5 10.74 - 3.25 -
10 10.45 - 3.26 -
20 10.10 - 3.10 -
50 9.58 - 2.47 -
100 9.17 - 1.69 -
150 8.94 - 1.12 -

aRef. [91]

4.3 Electronic properties

The electronic properties of the compound have been investigated in term of total,

partial density of states (DOS) and energy band structure. These were calculated

using PBE-GGA potential. The studied band structures of K2YAgBr6 at ambient

pressure is demonstrated in Figure 4.3. The Fermi level is exhibited at zero of

photon energy scale which is presented from −4 eV to +4 eV for all the samples.

According to the band structure diagram, this compound has an indirect bandgap at

L - Γ because the bands lie at different symmetry points, such as the valence band

maximum (VBM) at L-point and the conduction band minimum (CBM) Γ with
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Figure 4.3: The calculated electronic band structure of K2YAgBr6 double perovskite

under hydrostatic pressure up to 20 GPa.

values of 3.07 eV. It is evident that K2YAgBr6 is a wide band gap semiconductor.

Figure 4.3 and 4.4 shows The studied band structures of K2YAgBr6 under variant

pressures up to 150 GPa. The pressure is going up, the valance band maximum

at L-point and the conduction band minimum at Γ-point start to shift toward EF .

As a result, the Eg of K2YAgBr6 decreases with pressure. As band gap of the

K2YAgBr6 is reduced with increase of pressure, then the transition of excited electron

becomes much more convenient and faster from valance band to conduction band.

The K2YAgBr6 double perovskite has increasing affinity of absorption coefficient in
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Figure 4.4: The calculated electronic band structure of K2YAgBr6 double perovskite

under hydrostatic pressure up to 150 GPa.

the visible region with increasing applied hydrostatic pressure as depict in Figure

4.10. Under hydrostatic pressure, the band gap of the materials remain indirect

under the cosidered range of pressure. To probe the contributing states in the

band formation we plotted the total (TDOS) and partial density of states (PDOS)

of K2YAgBr6 in the range −4 to +4, which are shown in Figure 4.5 at ambient

pressure. The interband electronic transition depends upon the band structure and

density of states which are involved in the formation of these bands. From the

partial and total density of states, we can identify the electronic transitions between
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VB, CB, and the hybridization between the different orbitals in the material. The
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Figure 4.5: The total and partial density of states (PDOS) of b) K, c) Y, d) Ag and e)

Br atoms in K2YAgBr6 at applied pressure.

region to the left of EF shows valance band and region to the right of EF represents

conduction band. The plot of TDOS reveals that states in the valance band expand

from −4 to 0 eV, while in the conduction band they lie In the formation of the VB,

the energy states corresponding to 6s electrons of K meagerly, while energy states

corresponding to 4d electrons of Ag and 4p electrons of Br take part significantly.

However, in the conduction band, there is a major contribution of 4d states of

K. We also investigated the changes in total density of states (TDOS) and partial

density of states (PDOS) of K2YAgBr6 perovskite under several applied pressure is
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plotted in Figure 4.6 and 4.7. As is evident in the total DOS plot that with the
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Figure 4.6: Total density of states of K2YAgBr6 at different pressure.

increase in pressure, the highest peak close to the top of the valence band exhibits

an overall shift to the lower energy with continuously decreasing height. Moreover,

at 150 GPa, an evident splitting in this peak appears indicating strong repulsive

interaction between the states. Similarly, the bottom of the conduction band is

shifted to the lower energy as the pressure increases, due to which, the band gap

decreases that illustrates the pressure induced tuning of the optical properties can

be expected. From the partial DOS plots, strong pd-hybridization among Ag-6p

and K-6s states is evident. The strong pd-hybridization exerts more repulsive with

pressure that increases the band gap. All the states illustrate that the increasing

pressure from 0 to 150 GPa shifts the valence and conduction states to lower and

lower energies, respectively, that decreases the band gap. It has been observed that

the DOS at the Fermi level changes as the pressure changes. So the energy distance

between the VB and CB from fermi level is also change. Similar to its behavior at 0

GPa, the K2YAgBr6 double perovskite demonstrates p-type semiconducting nature

at all applied pressures.
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Figure 4.7: The partial density of states (PDOS) of b) K, c) Y, d) Ag and e) Br atoms

in K2YAgBr6 at applied pressure.

4.4 Optical properties

The study of optical properties is very important fundamental approach to gain

deep knowledge about the compatibility of material to better performance devices

applications. Optical properties of a material define how it interacts with light. The

response to electromagnetic radiation is important for optoelectronic device and so-

lar cell applications in visible region [92]. Therefore, in this current work we have

investigated the crucial optical properties such as dielectric function, absorption co-

efficient, optical conductivity, optical reflectivity and refractive index of K2YAgBr6

double perovskite in details under various hydrostatic pressure up to 150 GPa. Cal-

culating these optical properties of double perovskite material under pressure helps

us understand how their light interaction changes.

4.4.1 Dielectric function

To describe the absoption and dispersion ability of a material, it is necessary to

calculate the frequency dependent complex dielectric function of compound ϵ(ω) =
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ϵ1(ω) + iϵ2(ω), Where, ϵ1(ω) and ϵ2(ω) are represents real and imaginary parts of

the dielectric function [93]. The real part describes the ability of the material to

store energy in an electromagnetic field, while the imaginary part describes the loss

of energy due to absorption or scattering by the material. The imaginary ϵ2(ω) with

cubic symmetry substance [94]:

ϵ2(ω) =
e2h′

πm2ω2
Σν,c

∫
BZ

|Mcν(k)|2δ[ωcν(k)− ω]d3k (4.3)

where Mcv(k) = ⟨uck|e▽|uvk⟩ is dipole matrix element expressing all the contribut-

ing electronic transitions. The real part ϵ1(ω) is computed using Kramers-Kronig

relation [95, 96]. The static peak of dielectric function is an efficient parameter
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Figure 4.8: Calculated pressure-induced spectra of real portion of dielectric function of

K2YAgBr6.

which provides useful knowledge about the charge carrier recombination rate and

hence the entire potency of optoelectronic devices [97]. The materials which have

improved value of dielectric function means the materials have low charge carrier

recombination rate and greater efficiency of the optoelectronic devices. The real

part expline the dispersion and degree of polarization of a compound as a response

to the electromagnetic wave interactions whereas, the imaginary part indicates loss

factor or absorption of light energy. Based on our calculation, at ambient pressure,

the static dielectric function ϵ1(ω) is 3.4 eV which show that this material is good
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dielectric can be used for designing of high-value capacitor. This value are consistent

with high electron polarizability of this compound. The maximum polarizability oc-
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Figure 4.9: Calculated pressure-induced spectra of imaginary portion of dielectric func-

tion of K2YAgBr6.

curs inside the material when the polarization value rises from the static constant

to the high peak [98]. As can be seen in the Figure 4.8 and 4.9 the most significant

peak for both real and imaginary component of the function appear in the visible

region. At 0 GPa, the static part of ϵ1(ω), express as ϵ1(0), is 3.4. The static peak of

dielectric function of both real and imaginary parts of K2YAgBr6 perovskite rises in

the visible region with enhanced pressure. The further increase in incident photon

energy enhances ϵ1(ω) to maxumum values ϵ1(ω)max = 5.7 at 0 GPa, the value of

ϵ1(ω)max gets increased with rise in the pressure and shifts toward higher energy due

to decrease in band gap. Hence, ϵ1(ω) and ϵ1(ω)max has inverse relation with band

gap. For incident photon with the energy of ℏω > 4.9 eV, ϵ1(ω) decreases with in-

creasing of energy, as the plasmon frequency of the materil appears at the energy of

ℏω = 10.2 eV, at which ϵ1(ω) = 0. As a result the real component turn into negetive

value from this energy, so this materials exhibits metalic behavior from this energy,

otherwise this material is semiconductor. The imaginary part of the dielectric func-

tion is associated directly with material band structure and explains its absorption

nature [99]. ϵ2(ω) starts for each pressure at respective foundamental band gap. As,

optical absorption take place for transition of charges from valanvce band maximum
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(Br-4p states) to conduction minimum (Ag-4d states). In consequences of band gap

decrease with pressure, the start of metarial optical effectiveness shifts from ultra-

violet region to infrared region of electromagnetic spectrum. This makes K2YAgBr6

attractive for optical devices working in tunable ranges of electromagnetic radiation.

4.4.2 Absorption coefficient
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Figure 4.10: Calculated pressure-induced spectra of absorption coefficient of K2YAgBr6.

The optical absorption coefficient is a crucial to have knowledge about the capabil-

ity of a material to absorb light energy and hence provides significant information

about the solar energy conversion efficiency of the material which is required for

the practical application of material in prominant performance solar cell and other

photovoltaic devices [100]. The optical absorption coefficient is stated as the mea-

surement of penetration of light at specific energy (wavelength) into the material

before being absorbed. The analyzed optical absorption spectra of K2YAgBr6 per-

ovskite as a function of photon energy under different hydrostatic pressures up to

150 GPa in Figure 4.10. The absorption edge of K2YAgBr6 shifts in the direction to

the low energy region with increasing pressure that is consistent to the observation

about pressure dependent band gap variation. As the band gap and the absorption

edge vary within the visible region that shows complete transparency for the infrared

energies. The calculated absorption coefficient shows non-linear increase due to the

illustrated indirect band gap nature under hydrostatic pressure up to 150 GPa. The
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maximum broad absorption peak lies in the ultraviolet region which indicates that

the studied K2YAgBr6 double perovskite would be an efficient material to make de-

vices to sterilize surgigal equipment. The maximum range of ultraviolet light enegry

absorption of a material indicates its potential application surgical devices formation

as sterilizing the devices made of such material becomes easier and efficient [101].

4.4.3 Optical conductivity
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Figure 4.11: Calculated pressure-induced spectra of optical conductivity of K2YAgBr6.

The optical conductivity is basically another form of photoconductivity [102]. The

σ(ω) value is the result of conduction of electrons when photon of a certain fre-

quency falls on a material. The amount of photoconductivity as well as electrical

conductivity enhances of increasing photons absorption. The conductivity spectra

(real portion) under several hydrostatic pressures is illustrated in Figure 4.11 up to

12 eV of photon energy. At ambient pressure, the composition K2YAgBr6 starts

conduction at 3.5 eV. The optical coductivity enhances with applied pressure which

is a result of the enhancing absorption coefficient with increased pressure. The con-

ductivity spectra has similar characteristics like absorption spectra shows in Figure

4.10 because, material releases free carriers for conduction when absorbs energy.

The pressure-induced high energy shift of optical conductivity shows a potential in

K2YAgBr6 for electrical device applications involving incident radiation.
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4.4.4 Reflectivity
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Figure 4.12: Calculated pressure-induced spectra of reflectivity of K2YAgBr6.

The surface nature of the K2YAgBr6 perovskite can be understood in terms of

reflected light energy from the surface [100]. The reflactivity R(ω) spectra as a

function of electromagnetic radiation was calculated with various pressures as shown

in Figure 4.12 . The static value of Reflectivity R(0) was computed as 0.07, which

increase with pressure as tabulated in Table 4.2. The peak value of reflectivity was

obtained within energy range of 5eV - 7 eV. In this energy range K2YAgBr6 reflects

all incident radiations. The variation of peaks in intensity is due to the reflection of

light photons at different angles of the material surface. The amount of reflectivity

increases as much as enhanced pressure which may cause to reduce the potency of

the solar cell.

4.4.5 Refractive index

The light scattering fraction was evaluated by calculating the refractive index throught

the material. The refractive index and static dielectric function are related by the

equation n2(0) = ϵ1(0). Therefore, this explain the energy dependence changed

from n2 to ϵ1(0) as shown in Table 4.2. The spectrum of refractive index n(ω) for

K2YAgBr6 was calculated and shown in figure 4.13. The trend of n(ω) is similar

as ϵ1(ω). Its values starts with a static value n(0) of 1.8 at ambient pressure and
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Figure 4.13: Calculated pressure-induced spectra of refractive index of K2YAgBr6.

reaches to a maximum n(ω)max = 2.5 at 4.5 eV energy. With increases in pres-

sure the n(ω)max also increases and shifts to higher energies. After 10.8 eV, the

value of n(ω) decreases below unity. In this region the group velocity (Vg = c
n
) of

incident radiations is greater than c because refractive index has value less than

unity [103,104]. The fractinal Vg elucidate the materials showing group velocity en-

hances than the velocity of light illustrating superluminal nature that show photonic

application.

4.5 Thermoelectric properties

To shorten environmental pollution and to avoid energy disasters, thermoelectric

materials are of great interest, transforming wasted heat into useful electricity

[105–107]. As it has been exploited in various applications in our daily life like ther-

moelectric refrigeration, computer cooling and especially in solar cells [108,109]. To

manufacture all these devices we must choose materials with thermoelectric prop-

erties at room temperature (300 K). The figure of merit (ZT) is usually used to

mention the inclusive thermoelectric quality of a material. We can be calculated the

value of figure of merit in terms of electrical conductivity (σ
τ
), Seebeck coefficient
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(S) and thermal conductivity (k
τ
)using the equation:

ZT =
S2 × σ

(ke × kL)
(4.4)

Thermoelectric behavior calculating by BoltzTrap program [110], which depends

on a well-tested smoothed Fourier interpolation to obtain an analytical expression

of bands. Heat conduction is primarily mediated by the free electrons devices,

therefore, it could utilized by employing efficient thermoelectric materials.

4.5.1 Electrical conductivity

Electrical conductivity is a measure of material’s ability to conduct electric current.

It quantifies how easily electrons (or other charge carriers) can move through the

material when an electric field is applied conduction in materials induced due to

carriers free motion from one point to another point. There are two different fac-

tor for conductivity in semiconductor materials such as carrier concentrations and

the carrier mobilities. These can be written in mathematical form, σ =neµe+nhµh.

The electrical conductivity of a material can be used to quantify the flow of charge

through it. The calculated electrical conductivity by relaxation time (σ/τ) as a func-

tion of tempareture was ploted in Figure 4.14 between temperature range 100 - 1000

K. At ambient pressure electrical conductivity is 0.9×1019(Ω.m.s)−1 at 300K, which
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Figure 4.14: Calculated electrical conductivity under different hydrostatic pressure.
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linearly improves with the rising in temperature and attains 2.3× 1019(Ω.m.s)−1 at

800K. when we applied pressure up to 150 GPa, this conductivity gradually increase

with temperature reaching a maximum value of 3.4× 1019(Ω.m.s)−1 at 800K. Such

increasing value of (σ/τ) at larger temperature is attributed to generation of more

electrons (with large kinetic energies) due to bond breaking at elevated temperature.

From literature, best thermoelectric substances e.g, PbTe, and Bi2Te3 demonstrate

an increasing trend of electrical conductivity with temperature which is quite similar

to our studied syestem. Therefore, we can speculate that computed material can

be considered promising candidate for thermoelectric applications. The investigated

compound semiconductor nature is supported by the increase in electrical conduc-

tivity, which represents a continually growing carrier concentration and implies a

negative temperature coefficient of resistance.

4.5.2 Seebeck coefficient

The Seebeck coefficient S which determines the potential difference across temper-

ature gradient ∆T between connection of two metals. Higher Seebeck coefficient

values show that the large thermoelectric voltage is generated as the temperature

rises that suggest practical device applications. Figure 4.15 shown the Seebeck co-

efficient for temperature range (100-1000) K measured from the expression S =

∆V/∆T [111, 112]. The positive values of S for this composition reveal that pos-

itive charge carriers are the majority charge carriers in this material. At ambient

pressure and 300 K temperature S found maximum about 217 µV/K for K2YAgBr6

compound while with increasing temperature S linearly decreased, observed 214

µV/K for K2YAgBr6 compound at 800 K temperature as shown in the figure. We

also investigated the Seebeck coefficient against temperature for K2YAgBr6 double

perovskite under different pressures upto 150 GPa as shown in Figure 4.15. we see

that Seebeck coefficient decreased with rising temperature and also decreased under

pressure. To be more precise, at room temperature (300 K), the seebeck coefficient

reaches 214 µV/K to 240 µV/K when we applied pressure (0 - 150) GPa respectively

which are higher than 202 µV/K which is the optimum value of Seebeck coefficient

for a good thermoelectric material posed by Hong, et al. [113]. Under all applied
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Figure 4.15: Calculated seebeck coefficient under different hydrostatic pressure.

pressure, the value of S gradually increases compared to 0 GPa for K2YAgBr6 double

perovskite. Thus, the studied double perovskite material under hydrostatic pressure

are excillent for thermoelectric application.

4.5.3 Thermal conductivity
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Figure 4.16: Calculated thermal conductivity under different hydrostatic pressure.

The lattice vibration created in the materials through the conduct of thermally

excited electrons which effect in the total thermal conductivity (κe)/τ) having elec-

tronic and phonons parts that can be expressed as k = κe + κph. The electronic part

of the thermal conductivity, (κe), has also been calculated for K2YAgBr6 and is pre-
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sented in Figure 4.16. The participation of phonons can be neglected at minimum

temperature [114]. At 0 GPa the thermal conductivity, (κe/τ), exhibit smaller

values in the low temperature range; however, it reaches to 1.71014 (Ω.m.s)−1 at

300 K and attains maximum value of 81014 (Ω.m.s)−1 at 800 K. The increase in

the value of (κe/τ) with temperature indicates that at a higher temperature more

lattice vibrations are generated, which causes an increase in (κe/τ) [115]. So for

the best thermoelectric materials should be the thermal to electrical conductivity

(κe
σ
) very small, therefore, this ratio being of the order of 106 suggests the studied

compound as appropriate thermoelectric material [116].

4.5.4 Power factor

The power factor (PF) is another thermoelectric parameter that is used to determine

the thermoelectric performance of any materials and this is calculated by the ex-

pression PF = S2σ. The temperature dependent variation of PF is shown in Figure

4.17. The efficiency of this thermoelectric material without including (κe/τ) can be

explained using power factor (S2σ) should be considerably high. The indirect band

gap K2YAgBr6 (at 0 GPa) increases from zero and becomes maximum 4 W/mK2S

at 300 K and then continously increases to 7.8 W/mK2S with further increasing

temperature up to 800 K. We also investigated power factor against temperature
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Figure 4.17: Calculated power factor under different hydrostatic pressure.
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under hydrostatic pressure for compounds as shown in Figure 4.17. After applying

pressure, the power factor increases gradually for with increase temperature.

4.5.5 Figure of merits

Most important among the thermoelectric parameters is the figure of merit (ZT).

It determines the efficacy of thermoelectric devices and is calculated using the ex-

pression ZT = S2σ T κ, where S, σ, κ and T represent the Seebeck coefficient,

electrical conductivity, thermal conductivity and temperature in kelvin respectively

[109]. The variation of ZT for K2YAgBr6 double perovskite in the temperature

range 100− 1000 K under hydrostatic pressure is shown in Figure 4.18. At ambient

pressure, the maximum value of ZT is 0.71 at room temperature (300 K). At ambi-

ent pressure, it is about 0.71 at room temperature (300K) which increases with an

increase of temperature and become 0.8 at 1000K temperature. However, the room

temperature values of ZT and electronic thermoelectric parameter under pressure

are presented in the plot. When we applied pressure up to 150 GPa, ZT increases

with temperature for all pressure. These observations indicate that the compositions

under study have potential for use in thermoelectric applications [117]. The large

values of electrical conductivities and Seebeck coefficients and values of ZT close to

unity make these materials very attractive for thermoelectric device applications.
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Figure 4.18: Calculated figure of merits under different hydrostatic pressure.
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4.6 Mechanical properties

The elastic constants of solid materials are crucial parameters as they provide signif-

icant link between the mechanical properties and fruitful information concerning the

characteristic of existing forces in solids and particularly for the material stability

and stiffness [118, 119]. Elastic constants also provide dynamic information about

the ability of a crystal to resist external pressure. As lattice parameter reduces with

pressure, it is very significant to investigate the influences of pressure on the elastic

constants for the purpose of understanding the mechanical properties of K2YagBr6

double perovskite. Cubic structure crystals like pressure-induced K2YAgBr6 have

three indipendent elastic moduli Cij, these are C11, C12, and C44. The simulated

elastic parameters under variant pressures with available other theoritical result are

listed in Table 4.2. The mechanical stability of a crystal can be satisfied with its

elastic constants using Born crireria which is expressed as: C11 − C12 > 0, C11 > 0,

C44 > 0, C11+2C12 > 0, C12 < B < C11 Table 4.2 shows that the K2YAgBr6 double

perovskite is mechanically stable under cosiderable varient pressure as satisfies the

above stability criteria. Moreover, the present computed values of elastic constants

and other mechanical properties at zero pressure are very well matched with pre-

vious available DFT result [91], bearing nicety of the present calculation. From

table 4.2, it can be observed that the values of C11 and C12 and C44 increase rapidly

with pressure going up to 150 GPa. The elastic constants C11 and C12are connected

with the elasticity in length, increase with pressure enhanced [120]. Whereas, C44

is connected with the elasticity in shape, which provides relation between the de-

formation in shape and the stiffness [120]. The Cauchy pressure (C12 - C44) is

well-known parameter to indicate te ductile and brittle characteristics of materials.

The negetive value of Cauchy pressure of a material indicates its brittle and positive

value of Cauchy pressure of a material indicates its ductile nature. It can be seen

that the Cauchy pressure value of K2YAgBr6 double perovskite under all studied is

positive as zero pressure and increases with pressure enhanced, which indicates the

ductile nature of the perovskite increases with pressure enhanced.

The mechanical properties such as Bulk modulus (B), Shear modulus (G), Young’s
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Table 4.2: Calculated elastic constant C11, C12, C44, Cauchy’s pressure of K2YAgBr6
under hydrostatic pressure.

Pressures (GPa) C11 C12 C44 C12 − C44

0 22.42 19.89 5.81 14.07

5 77.42 29.58 6.22 23.36

10 109.96 31.51 8.24 23.27

20 166.36 40.27 7.09 33.17

50 289.98 63.08 3.30 59.78

100 424.81 93.72 0.09 93.63

150 545.50 113.61 -3.50 117.11

modulus (Y ), Pugh’s ratio (B/G), and Poisson’s ratio (ν) of the cubic K2YAgBr6

double perovskite are calculated with help of well-known expressions as given in

literature [100] and listed in Table 4.3. The lower values of B, G and Y of the

K2YAgBr6 double perovskite under zero pressure indicates it’s as soft material.

It can be noticed that the values of B, G,and Y rises with increased pressure,

which indicates the applying hydrostatic pressure provides benefit to the hardness

of K2YAgBr6. Ying et al. [121] also showed that the values of elastic moduli of

K2YAgBr6 increase with enhanced pressure. The bulk and shear moduli that can

forecast the hardness of material can be found using the Viogt-Reuss-Hill averaging

scheme approach [122]. The Viogt limits of the bulk modulus (B) and shear modulus

(G) for the cubic system are as follows:

Bv =
(C11 + 2C12)

3
(4.5)

Gv =
(C11 − C12 + 3C44)

5
(4.6)

However, the Reuss formulae for the bulk and shear moduli are:

Bv = BR (4.7)
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Table 4.3: The calculated the Bulk modulus B (GPa), the Shear modulus G (GPa),

Young’s modulus Y (GPa), the elastic anisotropy factor (A), B/G ratio and Poisson’s

ratio (ν) of K2YAgBr6 under hydrostatic pressure.

Pressures (GPa) B G Y A B/G ν

0 20.73 3.19 9.10 4.59 6.50 0.42

5 45.52 11.60 30.71 0.26 4.11 0.38

10 57.66 16.34 44.78 0.21 3.52 0.37

20 82.30 20.24 56.11 0.11 4.06 0.38

50 138.71 26.37 74.41 0.02 5.25 0.41

100 204.08 37.48 105.92 0.00 5.44 0.40

150 257.58 39.18 111.89 -0.01 6.57 0.42

GR =
5(C11 − C12C44)

4C44 + 3(C11 − C12)
(4.8)

Using Hill’s average approximation the bulk and shear moduli are defined as;

B =
Bv +BR

2
(4.9)

G =
Gv +GR

2
(4.10)

Young’s modulus, determines the strength of material is ratio of linear stress and

strain can be evaluated via relation.

Y =
9BG

3B +G
(4.11)

The Pugh’s ratio is an important factor to indicate ductile and brittle behavior of a

crystal. The low value of B/G indicates the brittle and high value of B/G indicates

the ductile nature of the material and the critical value is considered as 1.75 [123].

Table 4.43 shows that the B/G value of K2YAgBr6 double perovskite under zero

pressure is greater than the the critical value which reveals the ductile nature of
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the material. It is also noticed that the B/G value increases with the increase of

pressure, which indicates that the ductility of K2YAgBr6 can be improved by the

rise of pressure.

The Poisson’s ratio ν is very useful criteria which provides fruitful knowledge about

the bonding forces and stability of a crystal. The maximum value and minimum

value of ν for existing central forces in ionic crystals are cosidered as 0.5 and 0.25

respectively [124]. Ionic crystal’s interatomic forces are central forces. From Table

4.3, it can be noticed that the value of ν of K2YAgBr6 double perovskite at ambient

condition is 0.42 which is lower than 0.5 but greater than 0.25, indicating the exis-

tence of central forces in the K2YAgBr6 double perovskite. The value of ν increases

with increasing pressure.

The (ν) is also a useful indicator of brittleness and ductility of materials. The critical

value of ν to indicate ductile and brittle behavior of material is 0.26 [100]. The

value of ν of K2YAgBr6 double perovskite without any external pressure is higher

than 0.26 as displayed in Table 4.3, which reveals the ductile characteristics of the

perovskite. The value of ν increases with the increase of pressure, which predicts that

the ductility can be improved further by applying external pressure. The variation of

B/G and ν of K2YAgBr6 with pressure , it is evident that the ductility of K2YAgBr6

increases with enhanced pressure and hence pressure can be an efficient approach

where high ductility is required to fabricate devices of K2YAgBr6.
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Conclusions

In brief the structural, elastic, optoelectronic, and thermoelectric properties of

K2YAgBr6 double perovskite under hydrostatic pressure have been studied using

DFT calculations. The lattice constant and cell volume of the K2YAgBr6 decreases

with pressure. The elastic moduli increases with pressure, which benefits to the

hardness of K2YAgBr6. The study of Poissins’s ratio and Pugh’s shows that the

K2YAgBr6 material has increasing affinity of ductility with increasing pressure and

the material can be efficient for practical devices application where high ductility is

needed. The band gap decreases with pressure and shows indirect band gap for all

pressure range. The optical absorption as well as conductivity increase remarkably

in the ultraviolet region with enhanced pressure. The visible region of absorption

is worthy for photovoltaic domain and the ultraviolate region is more suitable for

optoelectronic devices such as UV Photodetectors, Light-Emitting Diodes and Pho-

tovoltaic devices can be improved greatly by inducing pressure. After increasing

pressure reduces the bandgap, enhances electrical conductivity, and thermal conduc-

tivity. This tunability under pressure make this material more efficient in converting

heat into electricity. The structural stablity, the calculated indirect band gap, opti-

cal properties and thermoelectric properties make them possible to use this double

perovskite K2YAgBr6 in different optoelectronic and thermoelectric applications.
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