
First-principles investigation on
optoelectronic and mechanical
properties of CaZrO3−xSex
(x = 0, 1, 2, 3) perovskites

Student ID: MS211311
Session: 2021-2022

Thesis submitted to the Department of Physics at
Jashore University of Science and Technology

in partial fulfillment of the requirements
for the degree of Master of Science

in Physics

October 2024



Abstract

In this work, we investigate the structural, electronic, optical and mechanical prop-

erties of spin polarized CaZrO3−xSex (x = 0, 1, 2, 3) perovskites using first-principles

calculations based on density functional theory as implemented in the WIEN2k code.

The crystal structure of the compounds CaZrO3−xSex (x = 0, 1, 2, 3) changes from

cubic phase of CaZrO3 to tetragonal configuration for CaZrO2Se and CaZrOSe2,

eventually returning to a cubic phase in CaZrSe3 with varying x values. The

electronic structure reveals that CaZrO3−xSex (x = 0, 1, 2, 3) compounds exhibit

semiconducting behavior. However, as the parameter x increases from 0 to 3, the

band gap value decreases from 3.44 eV to 0.23 eV. The elastic constants and me-

chanical properties such as Young modulus, shear modulus, and Poission ratio of

CaZrO3−xSex (x = 0, 1, 2, 3) materials have been obtained to show its mechanical

stability and ductility where CaZrO2Se exhibits brittle characteristics. Addition-

ally, the structural stabilities of these materials are ensured by the Goldschmidt’s

tolerance factor and negative forrmaion energy. Furtheremore, optical properties

including the dielectric function, refractive index, absorption coefficient, optical con-

ductivity, reflectivity, energy loss function and extinction coefficient are investigated

in each case. In addition, good absorption coefficient, high optical conductivity and

small reflectivity in the visible and ultraviolet region indicate that the CaZrO3−xSex

(x = 0, 1, 2, 3) perovskites have the potential to be used in diverse optoelectronic

applications beyond photovoltaics.
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Chapter 1

Introduction

Perovskite materials have gained significant interest of researchers over the past

ten years due to their attractive material properties and potential applications in

many industry and technological domain including electrode functionalities [1], wa-

ter splitting [2], photovoltaic, spintronic, photocatalysis [3], and thermoelectric ap-

plications [4]. Recently, oxide perovskite compounds have received immense consid-

eration due to their significant physical properties for optoelectronic devices [5–8].

On the other hand, chalcogenide perovskites have also been studied in recent years

because they exhibit smaller band gaps than oxide perovskites and higher stability

than halide perovskites. The invention of perovskite based solar cells have demon-

strated remarkable advancements in converting solar power, with their efficiency

rising from 3.8% in 2009 to an impressive 25.5% by 2020 [9]. Their sustained perfor-

mance over time is impeded by susceptibility to environmental factors like moisture,

light, and temperature, which can adversely affect their long-term stability [10,11].

Within the fascinating perovskite oxides, AZrO3 (A = Ca, Sr, Ba) are the most

widely examined and most suitable for optoelectronic and thermoelectric properties.

On the plane-wave ultrasoft pseudopotential technique based on the first-principles

density functional theory (DFT), J. Liu et al. [12] investigated the structural, elastic,

electronic and optical properties of the seven different phases of SrZrO3 and they
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Introduction

obtained seven phases of SrZrO3 are mechanically stable with cubic and tetrago-

nal structures. When S.S.A. Gillani et al. investigated how magnesium doping

influenced the band gap and optical characteristics of SrZrO3 perovskite, they dis-

covered that doping with magnesium changed the electronic band structure, making

this material a desirable option for optoelectronic compounds [13]. To understand

the electronic, optical and other characteristics of a perovskite material is essential

to comprehend its usefulness in various fields. However, conducting experimental

research requires a significant amount of resources and financial support. Density

functional theory based computational investigations can point the way for experi-

mental endeavours and, in many instances, provide a greater insight into the synthe-

sized, associated features, and application of materials. Electronic, optical, elastic

and many other property can be determined based on density functional theory

accurately [14–18], and several observation shows its validity by comparing with

experimental data.

In 2019 N.A. Noor et al. studied the pressure dependent optoelectronic and ground

state thermoelectric properties of MgZrO3 [19]. D.M. Hoatet al. investigated the

configurational, electronic and photon related features of cubic perovskite CaZrO3

and CaHfO3 in 2018 [20]. The mechanical behavior of CaZrO3 is also studied by Z.F.

Hou in 2008 [21]. Among several cubic perovskites, CaZrO3 has huge melting point,

extremely low thermal extension, very high toughness, elevated chemical constancy

and outstanding decay resistance in opposite to earth alkali oxides [22]. When M.

Rashid et al. studied the pressure dependent physical characteristics of alkaline

earth zirconates (AZrO3; A = Ca, Ba, and Sr), they observed the band gap tran-

sition from indirect to direct when pressure is applied. They also realized that this

agreement of the optical characteristics suggests practical optical applications [23].

The structural, electronic, and optical properties of pure CaZrO3 perovskite have

been tuned by the magnesium doping concentrations by fiest-principles computation

based on DFT investigated theoretically by I. Zeba et al. and observed the electronic

band gap decreases from 3.27 eV to 2.18 eV with increasing doping concentration.

Analysis of optical properties with Mg doping reveals that the absorption edge of

CaZrO3 show the red shift and it would be very potential candidate for optoelec-
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tronic application [24]. Yu-Liang Liu et al. [25] focused on tuning the photocatalytic

performance of NaTaO3 into the visible light range by doping S, Se, and Te elements.

The decrease in band energy gaps and a significant enhancement of absorption co-

efficient in the visible light range is observed for the doped structure. The effects of

sulfur, selenium, and tellurium on the electronic and optical properties of LiNbO3

were studied by using density functional theory within WIEN2k code based on the

generalized gradient approximation investigated by I. Ait Brahim et al. [26]. Chen-

hua Deng et al. [27] also observed transition metal-doped chalcogenide perovskite

magnetic semiconductor for photovoltaic applications. The effects of three axial

dilation strains and chalcogens-doped with dilation strain on electronic, optic, and

thermoelectric properties of BaSnO3 compound were examined by B. Akenoun et

al. [28]. They found that the bandgap decreases while the increase of chalcogens

elements in BaSnO3 up to 5.0% and observed the absorption coefficient shifts into

the visible region due to the reduction of bandgap which is quite recommended the

photovoltaic applications.

M.A. Ali et al. [29] investigated the effect of S-substitution on the material’s struc-

ture, electronic behavior, optical responses, mechanical strength, and thermody-

namic characteristics of KTaO3 and found that the band structure is affected by

S doping and optical characteristics of S-doped KTaO3 is a potentials maerial for

opoelecronic application. Importantly, all these compounds have exhibited mechan-

ical stability [29]. Moreover, the effect of dopants on the structural, electronic and

optical properties of pristine AgGaO3 and doped Ag1−xCrxGaO3 (x = 0.25, 0.50 and

0.75 at%) have been explored using first principle simulation by R.M. Arif Khalil

et al. [30]. The physical properties of perovskites CaZrO3−xSx (x = 0, 1, 2, 3) was

investigated by H.Labrim et al.using DFT and observed the band gap changes from

3.36 eV to 0.48 eV with the change of x values. Along with they deduced that mate-

rials have good absorption coefficient which makes them suitable for optoelectronic

applications [31].

Optroelectronic materials possess the remarkable ablity to initiate chemical reaction

by hardnessing energy from absorbed light, which can be enhanced by replacing or
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doping oxygen with chalcogenide atoms like sulfur (S) or selenium (Se) [32]. B.

Mouhib et al. explored the electronic and optical properties on sulfur (S) and se-

lenium (Se), or tellurium (Te) doping in AZrO3-type perovskite compound through

computational methods. These studies have observed a consistent trend: as the

dopant concentration increases, the material’s band gap decreases [33]. The elec-

tronic, optical and transport properties of perovskite BaZrS3−xSex compound doped

with different concentrations of Se (x = 0%, 10%, 15% and 20%) are investigated by

H. Zitouni et al. They found that the band gap values decreases by increasing the

doping concentrations from 1.59 eV (for 0% of Se) to 1.35 eV (for 20% of Se). In

addition to, BaZrS3 perovskite have good optoelectronic properties for photovoltaic

applications [34].

Therefore, we are motivated by the above work to investigate the optoelectronic and

mechanical properties of CaZrO3−xSex (x = 0, 1, 2, 3) perovskites to provide infor-

mation on its potential applications in photovoltaic and optoelectronic devices. In

this work, we start with the introduction of perovskite materials in the first chapter.

In chapter 2 we discuss the basic quantum mechanics which starts with Schrödinger’s

equation as well as the theoretical investigation of density functional theory includ-

ing the electron density, Thomas-Fermi theory, Hohenberg-Kohn theory, Kohn-Sham

equations, solving the Khon-Sham equation, and the exchange-correlation potential

such as local density approximation, generalized-gradient approximation. In Chap-

ter 3, we present the outcomes with discussions of this thesis work. In this chapter,

initially we focus on determining the crystal structure. Subsequently, we computed

various properties, including electronic band structure, density of states, optical

properties, as well as elastic properties of CaZrO3−xSex (x = 0, 1, 2, 3). Finally,

in chapter 4, we present our findings and show some possible applications of the

studied compounds.
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Chapter 2

Density Functional Theory

Computational approaches are becoming an integral part of the scientific world, par-

ticularly when calculating challenges. Computational and numerical methods are

crucial for issues involving numerous amounts of particles, data, and so on that can-

not be solved analytically. Furthermore, it requires a large amount of resources or

financial support for the experiment. DFT is a type of ab initio method that is often

referred to as a computational quantum mechanical modeling method. The method

is well-known at the matter of quantum chemistry, condensed matter physics, mate-

rials science. The application of this method starts with remedying the many-body

Schrödinger equation problem. However, DFT is more than just another method to

solve the Schrödinger equation. DFT provides an entirely distinct approach to any

interacting problem, translating it perfectly to more simple non-interacting problem.

This methodology is broadly utilized for resolving a variety of issues, with the elec-

tronic structure problem being the most common [35]. In DFT, the electron density

is used as the fundamental factor, instead of the wave-function. Another method

for solving the many-body Schrödinger equation is the Hartree-Fock approach, that

uses wave-functions to describe the electronic figure of atoms and substance. How-

ever, this methods has several drawbacks, including a high cost of calculation time

for investigating big systems. But DFT has demonstrated superior accuracy at a re-
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duced computing cost, making it superior to all other approaches. This facts makes

DFT the most useful method to analyze electronic structure. Walter Kohn with his

co-workers developed this “Density functional theory” and find out the way of using

the electron density to resolve the Schrödinger equation. He got novel prize for his

timeworn work [36]. The chapter provides an overview of fundamental quantum

physics, its difficulties, and how DFT resolves them.

2.1 Schrödinger Equation

The Schrödinger equation is a fundamental equation in quantum mechanics that

describes how the quantum state of a physical system changes. It is crucial for

understanding the behaviour of particles at the atomic and sub-atomic levels such

as electrons, photons and other quantum objects. It is a mathematical equation that

was thought of by Erwin Schrödinger in 1925 [37]. The mathematical representation

of Schrödinger equation is

ĤΨ = EΨ, (2.1)

where, Ĥ is the Hamiltonian operator, Ψ is the wave function of the system, and E is

the energy eigenvalue representing the total energy of the quantum state. This equa-

tion is crucial in finding the stationary states of quantum systems. The Hamiltonian

Ĥ represents the total energy operator of the system and is typically composed of

two parts:

Ĥ = T̂ + V̂ , (2.2)

where, T̂ = − ℏ2
2m

∇2 is the kinetic energy operator and V̂ = V (r) is the potential

energy operator. Putting this into the equation (2.1), the Schrödinger equation in

three dimensions becomes

[
− ℏ2

2m
∇2 + V (r)

]
Ψ(r) = EΨ(r). (2.3)

In one dimension, it simplifies to

[
− ℏ2

2m

d2Ψ(x)

dx2
+ V (x)Ψ(x)

]
= EΨ(x). (2.4)

6
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where, Ψ is a quantity associated with a moving particle. It is a complex quantity.

The wave function Ψ has no physical meaning. The wave function Ψ describes the

position of a particle with respect to time. It can be considered as probability am-

plitude. | Ψ |2 is proportional to the probability of finding a particle at a particular

time that is called probability density.

| Ψ |2=| Ψ∗Ψ |2 (2.5)

The wave function Ψ must be finite everywhere. If Ψ is finite for a particular point,

it means an infinite large probability of finding the particles at that point. This

would violates the uncertainity principles. It must be single valued. If Ψ has more

than one value at any point, it means more than one value of probability of finding

the particle at that point which is ridiculous. The wave function must be continuous

and have a continuous first derivative everywhere and its must be normalizable.

For the sake of simplicity, the discussion is restricted to the time-independent wave

function. A question always arising with physical quantities is about possible inter-

pretations as well as observations. The Born probability interpretation of the wave

function, which is a major principle of the Copenhagen interpretation of quantum

mechanics, provides a physical interpretation for the square of the wave function as

a probability density [36,38]

P = |ψ(r1, r2, .....rN)|2dr1dr2.....drN (2.6)

Equation (2.6) describes the probability that particles 1,2,...,N are located simul-

taneously in the corresponding volume element dr1dr2...drN [39]. What happens if

the positions of two particles are exchanged, must be considered as well. Following

merely logical reasoning, the overall probability density cannot depend on such an

exchange,

|Ψ(r1, r2, ..., ri, rj, ..., rN)|2 = |Ψ(r1, r2, ..., rj, ri, ..., rN)|2 (2.7)

There are only two possibilities for the behavior of the wave function during a

7
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particle exchange. The first one is a symmetrical wave function, which does not

change due to such an exchange. This corresponds to bosons (particles with integer

or zero spin). The other possibility is an anti-symmetrical wave function, where

an exchange of two particles causes a sign change, which corresponds to fermions

(particles which half-integer spin) [40,41].

In this text only electrons are from interest, which are fermions. The anti symmetric

fermion wave function leads to the Pauli principle, which states that no two electrons

can occupy the same state, whereas state means the orbital and spin parts of the

wave function [42]. If equation (2.6) describes the probability of finding a particle

in a volume element, setting the full range of coordinates as volume element must

result in a probability of one, i.e. all particles must be found somewhere in space.

This corresponds to the normalization condition for the wave function.

∫
dr1

∫
dr2...

∫
drN |ψ(r1, r2, ...rN)|2 = 1 (2.8)

Equation (2.8) also gives insight on the requirements a wave function must fulfill in

order to be physical acceptable. Wave functions must be continuous over the full

spatial range and square-integratable [43]. The eigenfunctions Ψk with correspond-

ing energy eigenvalues are Ek. The set Ψk is complete and Ψk may always be taken

to be orthonormal and normalized

∫
Ψ∗

kΨldx
N = ⟨Ψk|Ψl⟩ = δkl (2.9)

We denote the ground state wave function and energy by Ψ0 and E0. Here,
∫
dxN

means integration over 3N spatial coordinates and summation over N spin coordi-

nates. Expectation values of observables are given by formula,

⟨Â⟩ =
∫
Ψ∗AΨdx∫
Ψ∗Ψdx

(2.10)

where, Â is the Hermitian linear operator for the observable A. If Ψ is normalized,

8
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expectation values of kinetic and potential energy are given by the formulas

T [Ψ] = ⟨T̂ ⟩ =
∫

Ψ∗TΨdx (2.11)

V [Ψ] = ⟨V̂ ⟩ =
∫

Ψ∗VΨdx (2.12)

When a system is in the state Ψ, which may or may not satisfy equation (2.1), the

average of many measurements of the energy is given by the formula

E[Ψ] =
⟨Ψ|Ĥ|Ψ⟩

⟨Ψ⟩
(2.13)

where,

⟨Ψ|Ĥ|Ψ⟩ =
∫

Ψ∗ĤΨdx (2.14)

Since furthermore, each particular measurement of the energy gives one of the eigen-

values of Ĥ, we immediately have

E[Ψ] ≥ E0 (2.15)

The energy computed from a guessed Ψ is an upper bound to the true ground state

energy E0. Full minimization of the functional E[Ψ] with respect to all allowed N-

electron wave functions will give the true ground state Ψ0 and energy E[Ψ0] = E0,

that is,

E0 = min
Ψ
E[Ψ] (2.16)

Formal proof of minimum energy principle goes on follows. Expanding Ψ in terms

of normalized eigenstates of Ĥ

Ψ =
∑
k

CkΨk (2.17)

Then the energy becomes,

E[Ψ] =

∑
k |Ck|2Ek∑
k |Ck|2

(2.18)

where Ek is the energy k
th eigenstate of Ĥ. Noting that, the orthogonality of the Ψk

9
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has been used. Because E0 ≤ E1 ≤ ... ≤ EN . E(Ψ) is always greater than or equal

to E0 and it reaches its minimum if and only if Ψ = C0Ψ0. Every eigenstate Ψ is

an extremum of the function E[Ψ]. In other words one may replace the Schrödinger

equation with the variational principle

δE[Ψ] = 0 (2.19)

2.2 Born-Oppenheimer (BO) Approximation

The Born-Oppenheimer approximation is a fundamental concept in quantum me-

chanics, particularly in the context of molecular and condensed matter physics. It

addresses the challenge of the many-body problem by making a crucial simplifying

assumption. In condensed matter physics, the many-body problem arises because

materials are composed of a large number of interacting particles (such as electrons

and nuclei). The interactions between these particles are typically complex and can

be described by quantum mechanical principles. The Hamiltonian of a many-body

system consisting of nuclei and electrons can be written as [44],

Ĥ = −
∑
I

ℏ2

2MI

∇2
RI

−
∑
i

ℏ2

2me

∇2
ri
+

1

2

∑
I,J

ZIZJe
2

|RI −RJ |

+
1

2

∑
i,j

e2

|ri − rj|
−
∑
I,i

ZIe
2

|RI − ri|

(2.20)

where, the indexes I, J run on nuclei, i and j on electrons, RI and MI are position

and mass of the nuclei, ri and me are position and mass of the electrons. |RI −RJ |,

|RI − ri| and |ri − rj| represent the distance between the nucleus-nucleus, nucleus-

electron, and electron-electron. In the right hand side, first term −
∑

I
ℏ2

2MI
∇2

RI

represents the kinetic energy of the nuclei. Second term −
∑

i
ℏ2
2me

∇2
ri

denotes the

kinetic energy of electrons. Third term 1
2

∑
I,J

ZIZJe
2

|RI−RJ |
is for the potential energy

of nuclei-nuclei interaction. Fourth term 1
2

∑
i,j

e2

|ri−rj | is for the potential energy of

electron-electron coulomb interaction and the last term
∑

I,i
ZIe

2

|RI−ri| represents the

potential energy of nuclei-electron coulomb interaction.

10
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In condensed matter physics, Born-Oppenheimer (BO) approximation is the well

known mathematical approximation. Specifically, it is the assumption that the

wave function of atomic nuclei and electrons in a molecule can be treated separately,

based on the fact that the nuclei are much heavier than electrons [45]. Due to larger

relative mass of a nucleus compared to an electron, the coordinates of the electrons

are dynamic. The approach is named after Max Born and J. Robert Oppenheimer

in 1927. This approximation is widely used in quantum mechanics to speed up the

computation of molecular wavefunctions and other properties for large molecules.

There are cases where the assumption of separable motion no longer holds, which

make the approximation lose validity, but even then the approximation is usually

used as a starting point for more refined methods. Applying Born-Oppenheimer

approximation, the electronic Hamiltonian is grouped into three terms

Ĥelec = −
∑
i

ℏ2

2me

∇2
ri
+

1

2

∑
i,j

e2

|ri − rj|
−
∑
I,i

ZIe
2

|RI − ri|
, (2.21)

and the Schrödinger equation for a many-body system reduces to

ĤelecΨ = −
∑
i

ℏ2

2me

∇2
ri
Ψ+

1

2

∑
i,j

e2

|ri − rj|
Ψ−

∑
I,i

ZIe
2

|RI − ri|
Ψ. (2.22)

As soon as the potential is known, the next step is the determination of the wave

function, which contains all information about the system. As simple as that sounds,

the exact knowledge of the potential is not possible for most natural systems, i.e.

in similarity to classical mechanics, the largest system which can be solved analyt-

ically is a two-body system, which corresponding to a hydrogen atom. Using all

approximations introduced up to now it is possible to calculate a problem similar

to H+
2 , a single ionized hydrogen molecule. To get results for larger systems, further

approximations have to be made.

2.3 The Hartree-Fock (HF) Approximation

If we can solve the electronic Schrödinger equation, we can describe the motion of

the nuclei by introducing a nuclear Hamiltonian under the same assumptions used
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to derive the electronic Schrödinger equation. So the major problem in condensed

matter physics is to solve the electronic Schrödinger equation, which is the goal of

the Hartree-Fock (HF) method. The Hartree-Fock approach is the first standard ap-

proach to many body system which was applied in 1930 by Fock [46]. The problems

which are not possible to solve analitycallay of many body problems, this approach

gives a suitable strategy to approximate it. It is as similar as the Least Action

Principle of classical mechanics. For now, we have the interest only on the elec-

tronic Schrödinger equation. Therefore, we get Ĥ ≡ Ĥelec, Ê ≡ Êelec. The energy

as observable corresponds to the general Hamiltonian operator can be calculated

as [47,48],

E = ⟨Ĥ⟩ =
∫
dr1

∫
dr2...

∫
drNΨ

∗(r1, r2, ..., rN)ĤΨ(r1, r2, ..., rN) (2.23)

If we take a wave function as a trial, the obtained energy is not the same as the actual

ground state wave function. Actual ground state energy is always lower than the

obtained energy. If trial wave function is equal as the ground state wave function,

the energies in both cases are equal.

Etrial ≥ E0 (2.24)

with

Etrial =

∫
dr1

∫
dr2...

∫
drNΨ

∗
trial(r1, r2, ..., rN)ĤΨtrial(r1, r2, ..., rN) (2.25)

and

E0 =

∫
dr1

∫
dr2...

∫
drNΨ

∗
0(r1, r2, ..., rN)ĤΨ0(r1, r2, ..., rN) (2.26)

The expressions above are usually inconvenient to handle. For the sake of a compact

notation, the following the Dirac’s bra-ket notation can be applied to the above

equation as [49],

⟨Ψtrial|Ĥ|Ψtrial⟩ = Etrial ≥ E0 = ⟨Ψ0|Ĥ|Ψ0⟩ (2.27)

12
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Proof: The eigenfunctions ψi of the Hamiltonian Ĥ (each corresponding to an

energy eigenvalue Ei) form a complete basis set, therefore any normalized trial wave

function Ψtrial can be linear combination of those eigenfunctions [50].

Ψtrial =
∑
i

λiψi (2.28)

The assumption is made that the eigenfunctions are orthogonal and normalized.

Therefore, it follows that

⟨Ψtrial|Ĥ|Ψtrial⟩ = 1 = ⟨
∑
i

λiψi|
∑
j

λjψj⟩ =
∑
i

∑
j

λ∗iλj⟨ψi|ψj⟩ =
∑
j

|λj|2

(2.29)

On the other hand, following equation (2.29)

Etrial = ⟨Ψtrial|Ĥ|Ψtrial⟩ = ⟨
∑
i

λiψi|Ĥ|
∑
j

λjψj⟩ =
∑
j

Ej|λj|2 (2.30)

Together with the fact that the ground state energy E0 is defined by the lowest

possible energy, and therefore has the smallest eigenvalue (E0 ≤ Ei), it is found

that

Etrial =
∑
j

Ej|λj|2 ≥ E0

∑
j

|λj|2 (2.31)

One of the key ideas of density functional theory is the mathematical framework

mentioned above, which consists of rules that assign numerical values to functions.

In constrant to functional, which takes a function as an input and produces numerical

outputs, whereas a function receives a numerical input and produces a numerical

output [51]. Expressed in terms of functional calculus, where Ψ −→ N addresses all

allowed N electron wave functions [52], this means

E0 = min
Ψ→N

E[Ψ] = min
Ψ→N

⟨Ψ|Ĥ|Ψ⟩ = min
Ψ→N

⟨Ψ|T̂ + V̂ + Û |Ψ⟩. (2.32)

Due to the abundance of potential wave functions and, on the other hand, the

constrained processing capacity and time, the solution for the N electron systems is

almost unachievable. As in the restricted Hartree-Fock approximation, it is possible

13
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to limit the search to a more manageable subset of wavefunctions. The search

is restricted to the antisymmetric product of N one electron wave functions that

approximates N wave functions. A wave function of this type is called Slater-

determinant [53].

Ψ0 ≈ ϕSD = (N !)−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) · · ·χN(x1)

χ1(x2) χ2(x2) · · ·χN(x2)
...

...
...

χ1(xN) χ2(xN) · · ·χN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.33)

It is important to note that the spin-orbitals χi(xi) are depend on spatial coordinates

as well as spin coordinates. Spin coordinates are introduced by the spin function,

xi = ri, s. The text by Szabo [42] and Holthausen [52] omits a through description

of the spin orbitals and their properties. Returning to the variational principle

and equation, the ground state energy approximated by a single slater determinan

becomes

E0 = min
ϕSD→N

E[ϕSD] = min
ϕSD→N

⟨ϕSD|Ĥ|ϕSD⟩ = min
ϕSD→N

⟨ϕSD|T̂ + V̂ + Û |ϕSD⟩ (2.34)

A general expression for the Hartree-Fock Energy is obtained by uses of the slater

determinant as a trial function. According to equation (2.29), the normalization

integral ⟨ΨHF |ΨHF ⟩ is equal to 1 and the energy expectation value is found to be

given by the formula

EHF = ⟨ϕSD|Ĥ|ϕSD⟩ =
N∑
i=1

Hi +
1

2

N∑
i,j=1

(Jij −Kij) (2.35)

where

Hi =

∫
ψ∗
i (x)[−

1

2
∇2 + U(x)]ψi(x)dx (2.36)

Ji,j =

∫ ∫
ψi(x1)ψ

∗
i (x1)

1

r12
ψ∗
j (x2)ψj(x2)dx1dx2 (2.37)

Ki,j =

∫ ∫
ψi(x1)ψj(x1)

1

r12
ψi(x2)ψ

∗
j (x2)dx1dx2 (2.38)

These integrals are all real and Jij ≥ Kij ≥ 0. Jij are called Coulomb integrals and
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Kij are exchange integrals [42, 52]. We have the important equation

Jij = Kii (2.39)

This is the reason the double summation in the equation that include i = j terms.

Minimization of equation subject to the orthonormalization conditions,

ψ∗
i (x)ψj(x)dx = δij (2.40)

gives the Hartree-Fock differential equation

F̂Ψi(x) =
N∑
j=1

εijψj(x) (2.41)

Where,

F̂ = −1

2
∇2 + v+ g (2.42)

in which the Coulomb exchange operator g(x1) is given by

g = ĵ − k̂ (2.43)

Here,

J(x1)f(x1) =
N∑
k=1

∫
ψ∗
k(x2)ψk(x2)

1

r12
f(x1)dx2 (2.44)

K(x1)f(x1) =
N∑
k=1

∫
ψ∗
k(x2)ψk(x2)

1

r12
ψk(x1)dx2 (2.45)

with f(x1) an arbitrary function. The matrix ε consists of lagrange multipliers.

Also,

ε∗ji = εij (2.46)

where, ε is Hermitian. Now multiplying equation (2.35) with Ψ∗
i and integrating,

one obtains the formula for orbital energies

ε ≡ εii = ⟨ψi|F̂ |ψi⟩ = Hi +
N∑
j=1

(Jij −Kij) (2.47)
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Summing over i and compearing with equation (2.38) we get,

EHF =
N∑
i=1

εi − V̂ee (2.48)

Where the symbol Vee stands for electron electron repulsion energy.

V̂ee =

∫
ψ∗
HF (x

N)(
∑
i<j

1

rij
)ψH(x

N)dxN
1

2

N∑
i,j=1

(Jij −Kij) (2.49)

For the total molecular energy including nucleus-nucleus repulsion one has,

WHF =
N∑
i=j

εi − V̂ee + V̂nn (2.50)

Neither EHF nor WHF is equal to the sum of orbital energies. Hartree-Fock method

is a non-linear self-consistent field.

2.4 Limitation and Failings of the Hartree-Fock

(HF) Approximation

Atoms as well as molecules can have an even or odd number of electrons. If the

number of electrons is even and all of them are located in double occupied spatial

orbitals, the compound is in a singlet state. Such systems are called closed-shell

systems. Compounds with an odd number of electrons as well as compounds with

single occupied orbitals, i.e. species with triplet or higher ground state, are called

open-shell systems respectively. These two types of systems correspond to two differ-

ent approaches of the Hartree-Fock method. In the restricted HF-method (RHF),

all electrons are considered to be paired in orbitals whereas in the unrestricted

HF (UHF)-method this limitation is lifted totally. It is also possible to describe

open-shell systems with a RHF approach where only the single occupied orbitals

are excluded which is then called a restricted open-shell HF (ROHF) which is an

approach closer to reality but also more complex and therefore less popular than

UHF [52].
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There are also closed-shell systems which require the unrestricted approach in order

to get proper results. For instance, the description of the dissociation of H2 (i.e.

the behavior at large internuclear distance), where one electron must be located at

one hydrogen atom, can logically not be obtained by the use of a system which

places both electrons in the same spatial orbital. Therefore the choice of method is

always a very important point in HF calculations. Kohn states several M = p5 with

3 ≤ p ≤ 10 parameters for an output with adequate accuracy in the investigations of

the H2 system [54]. For a system with N = 100 electrons, the number of parameters

rises to,

M = p3N = 3300 → 10300 ≈ 10150 → 10300 (2.51)

According to the equation (2.51), energy reduction would have to be done in a space

with at least 10150 dimension, which is well above current computer capabilities. As

a result, HF methods are limited to situations involving a modest number of electron

(N ≈ 10). This barrier commonly referred to as the exponential wall because of

the exponential component in equation (2.49). Since a many electron wave function

cannot be described entirely by a single Slater determinant, the energy obtained

by HF calculations is always larger than the exact ground state energy. The most

accurate energy obtainable by HF-methods is called the Hartree-Fock-limit. The

Hartree-Fock-limit is the most precise energy that can be calculated using HF-

methods. Since a many electron wave function cannot be described entirely by a

single Slater determinant, the energy obtained by HF calculations is always larger

than the exact ground state energy. The most accurate energy obtainable by HF-

methods is called the Hartree-Fock-limit.

2.5 Correlation Energy

No single determinant or straightforward combination of a few determinants can

ever accurately describe the wave function for a system with many interacting elec-

trons. The calculation of the energy error, however, is here characterized as being

negative. The difference between EHF and Eexact is called correlation energy and
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can be denoted as [55],

EHF
corr = Emin − EHF . (2.52)

When atomic and molecular changes preserve the number and type of chemical

bonds, correlation energy tends to remain constant, but it can fluctuate significantly

and become decisive when bonds change. Its magnitude can range from a few

hundredth of an atomic unit to hundreds of kilocalories per mole. Exchange energies

are an order magnitude or bigger, even if the self exchange term is omitted. Despite

the fact that Ecorr is usually small against Emin, as in the example of a N2 molecule

where

EHF
corr = 14.9eV < 0.001Emin. (2.53)

It can have a huge influence. For instance, the experimental dissociation energy of

the N2 molecule is

Ediss = 9.9eV < Ecorr (2.54)

which corresponds to a large contribution of the correlation energy to relative ener-

gies such as reaction energies which are of particular interest in quantum chemistry.

The main contribution to the correlation energy arises from the mean field approx-

imation used in the HF-method [52].

2.6 The Electron Density

In previous sections, we observed the challenges involved in solving the Schrödinger

equation for larger structures. Scientists needed to come up with an approximation

or model for wave function that will give logical outcome. When establishing such a

model, it’s worth to remember that wave function is not observable directly. Instead,

we can measure is the probability that N electrons at some particular set of position

(r1, ...., rN). Also, we need to remember that all electrons are identical. So we can

not level them as electron 1 or electron N , but we could figure out the probability

of any order or set of N electrons being in the coordinates r1 to rN . Keeping this

factors in mind, the electron density which is the fundamental parameter for DFT

can be calculated like [56,57]:
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n(r) = N

∫
dr2...

∫
ψ∗(r1, r2, ..., rN)ψ(r1, r2, ..., rN)drN (2.55)

The total number of electrons can be obtained by integration the electron density

over the spatial variables [52]

N =

∫
n(r)dr (2.56)

2.7 Thomas-Fermi Model

Many people have looked into the subject of explaining the density of a assembly

with multiple electrons, which led to the so-called density functional theory. The

first exploration has done by Llewellyn Thomas and Enrico Fermi in 1927, which

is known as Thomas-Fermi model [58]. The model helps to describe the electronic

structure of many election system. It was made in a semi-classical way soon after the

Schrödinger equation was made. It’s a semi-classical approach since it borrows some

ideas from quantum mechanics. But the rest of the ideas don’t use quantum physics.

Instead, they can be operated with regular function. Unlike the wave function based

approach, this formulation was completely based on electronic density and is seen as

a precursor to the modern DFT. The total energy of a system, within the Thomas-

Fermi model, is given as a functional of density like ETF [n(r)]. The Thomas-Fermi

energy functional composed of three terms, is expressed as follow:

ETF = X

∫
n(r)

5
3dr+

∫
n(r)Vext(r)dr+

1

2

∫ ∫
n(r)n(r)

|r− r′|
drdr

′
(2.57)

The initial phase is the electronic kinetic energy of a system of electrons in a uniform

electron gas that do not interact with each other. We can obtain this by integrating

the kinetic energy density of a homogeneous electron gas to t0[n(r)] as:

TTF =

∫
t0[n(r)]dr (2.58)

t0[n(r)] is obtained by summing all the free-electron energy states ε = P 2

2M
up to the
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Fermi wave vector PF = [3π2n(r)]
1
3 given by:

t0[n(r)] =
2

2π2

∫ N

0

P 2

2M
NPdP (2.59)

The term NP leads to the density of allowed states in reciprocal space given by

4πP 2V 2

h3 . This gives us the result for X as:

X =
3

10
(3π2)

2
3 (2.60)

The second term represents the classical electrostatic energy of attraction between

nuclei and electron. Here Vext(r) is the classic coulomb potential arising from the

nuclei, given by the following expression:

Vext(r) = −
N∑
i=1

Zi

|r−Ri|
(2.61)

And finally the third term in the energy functional represent the electron-electron

interaction of the system. It is approximated by the classical coulomb repulsion be-

tween electrons. This is also known as Hartree energy. To obtain the ground state

density of a system, the Thomas-Fermi equation must be minimized subjected to

the constraint that the number of electron is conserved. This type of constraint min-

imization problem can be solved by using Lagrange multiplayer. Say, the minimiza-

tion of a functional A[X], subjected to the constraint B[X], leads to the stationary

condition:

δ(A[X]− αB[X]) = 0 (2.62)

Here is a constant which is known as Lagrange multiplayer. This minimization

leads to the solution of corresponding Euler equation:

δA[X]

δX
− α

δB[X]

δX
(2.63)

Applying this above formula to the Thomas-Fermi model, it will give us the station-
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ary condition:

δ[ETF [n(r)]− α(

∫
n(r)dr)−N)] = 0 (2.64)

This yields the so-called Thomas-Fermi equation as:

5

3
Xn(r)

2
3 + Vext(r) +

∫
n(r

′
)

|r− r′|
dr

′
(2.65)

This above equation can be solved using iterative methods to obtain the ground

state density. Thomas-Fermi model differs from other models because it is simple,

easy to understand, and works for large of temperatures as well as pressures. With

this model, we can use density to figure out the estimated term for kinetic energy.

In orbital-free DFT, this formula for kinetic energy within Thomas-Fermi theory

is also used as a part of better density approximations for kinetic energy. Though

Thomas-Fermi theory contains all the necessary ingredients which paved the way to

modern DFT, it has many shortcoming as well. And those shortcomings are:

• It tell how atoms will stick together. So, this idea be made up of molecules and

solids.

• The estimation of kinetic energy is done in a rudimentary manner. Kinetic energy

accounts for a substantial portion of the overall energy. So even small mistakes can

add up to big problems.

• Oversimplified descriptions of how electrons interact with each other, which don’t

take into account many quantum effects.

• The correlation effect is neglected completely.

2.8 The Hohenberg-Kohn (HK) Theorems

When the Thomas-Fermi approach was first conceptualized, it was thought that the

energy could be declared solely by means of its electronic density. It took more than

three decades to offer a convincing argument for the validity of this idea, despite the

fact that it seemed reasonable at the time. In 1964, Hohenberg and Kohn introduced

theorems that established a strong logical basis for the preceding concepts, which

they also proved. The idea of DFT is built upon two essential theorems provided by
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Walter Kohn and Pierre Hohenberg. This theorems are known as Hohenberg-Kohn

theorems [52,59]. The theorems with their validity are given below:

2.8.1 The HK Theorem I

The Hohenberg-Kohn first theorem is:

The ground state of energy E0 from Schrödinger equation in a presence of external

potential V (r) is a unique functional of electron density n0(r).

According to the first theorem, the ground-state density and the external potential

correspond one to one. Since the external potential is fixed, the Hamiltonian hence

the wave function Ψ is fixed by n0(r). The evidence in support of this theorem

is straightforward. Consider the ground states of two N-electron systems that are

characterised by two external potentials Vext(r) and V
′
ext(r). These potentials differ

from each other by more than just an additive constant. The corresponding Hamil-

tonians Ĥ and Ĥ ′ , which have the same ground state density n(r) but would have

different ground state wave functions, Ψ and Ψ
′
, with ĤΨ = E0Ψ and Ĥ ′Ψ

′
= E

′
0Ψ

′
.

Since Ψ
′
is not the ground state of Ĥ, it follows that

E0 < ⟨Ψ′|Ĥ|Ψ′⟩

< ⟨Ψ′|Ĥ ′|Ψ′⟩+ ⟨Ψ′|Ĥ − Ĥ ′|Ψ′⟩

< E ′
0 +

∫
n0(r)[Vext(r)− V ′

ext(r)]dr

(2.66)

Similarly,

E ′
0 < ⟨Ψ|Ĥ|Ψ⟩

< ⟨Ψ|Ĥ|Ψ⟩+ ⟨Ψ|Ĥ ′ − Ĥ|Ψ⟩

< E0 +

∫
n0(r)[V

′
ext(r)− Vext(r)]dr.

(2.67)

Adding equation (2.66) and equation (2.67)) lead to the contradiction

E0 + E ′
0 < E0 + E ′

0 (2.68)

Hence, no two different external potential Vext(r) can give rise to the same ground
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state density n0(r) which determines the external potential Vext(r), except for a con-

stant. That is to say, there is a one to one mapping between the ground state density

n0(r) and the external potential Vext(r), although the exact formula is unknown.

2.8.2 The HK Theorem II

The second Hohenberg-Kohn theorem is:

There exists a universal functional F [n(r)] of the density independent of the ex-

ternal potential Vext(r), that the minimum value of energy functional E[n(r)] ≡∫
n(r)Vextn(r)dr + F [n(r)] is the exact ground state energy of the systen and the

exact ground state density n0(r) minimizes this functional. Thus the exact ground

state energy and density are fully determined by the functional E[n(r)] [60].

The universal functional F [n(r)] can be written as

F [n(r)] ≡ T [n(r)] + Eint[n(r)] (2.69)

where T [n(r)] is the kinetic energy and Eint[n(r)] is the interaction energy of the

particles. According to variational principle [61], for any wavefunction Ψ′, the energy

functional E[Ψ′]:

E[Ψ′] ≡ ⟨Ψ′|T̂ + V̂int + V̂ext|Ψ′⟩ (2.70)

has its global minimum value only when Ψ′ is the ground state wavefunction Ψ0

with the constraint that the total number of the particle is conserved. According

to HK theorem I, Ψ′ must correspond to a ground state with particle density n′(r)

and external potential V ′
ext(r), then E[Ψ′] is a functional of n′(r). According to
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variational principle:

E[Ψ′] ≡ ⟨Ψ′|T̂ + V̂int + V̂ext|Ψ′⟩

= E[n′(r)]

=

∫
n′(r)V ′

ext(r)dr+ F [n′(r)]

> E[Ψ0]

=

∫
n0(r)Vext(r)dr+ F [n0(r)]

= E[n0(r)]

(2.71)

Thus the energy functional E[Ψ
′
] ≡

∫
n(r)Vext(r)dr + F [n(r)] evaluated for the

correct ground state density n0(r) is indeed lower than the value of this functional

for any other density n(r). Therefore by minimizing the total energy functional of

the system with respect to variations in the density n(r), one would find the exact

ground state density and energy. This functional only determines ground state

properties, it doesn’t provide any guidance concerning excited states.

2.8.3 Advantage and Disadvantage of HK Theorems

With the help of these theorems, it is possible to calculate all the ground and excited

states of many-body wave-functions. Because n(r) has a single effect on external

potential, it also has a single effect on the ground state wave function, which could

be found from computing the full Schrodinger equation for many bodies. It also

implies, density of the ground particles entirely and exclusively influences all system

attributes. The Hamiltonian resembles the electronic Hamilton operator described

in the formula (2.22), which was the subject of Hohenberg and Kohn’s initial in-

vestigation because it involved an electron gas. The advantage of Hohenberg-Kohn

theorems is that it make the process of resolving the Schrödinger equation simpler

by shifting the focus from finding a function of 3N variables (the wave function) to

a function of three variables (the electron density). The Hohenberg-Kohn theorem

utilizes the variational principle to establish the connections between potential and

density.
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Unfortunately, Hohenberg and Kohn’s framework is precise, yet it is not very useful

in practical calculations. Hohenberg and Kohn together could not offer any way to

find the proper electronic density [62]. As there is no explicit formula linking the

kinetic energy to the electronic density at this point, determining it accurately is

the main challenge. The Laplacian of the one-body density matrix, which is not

directly related to the density itself, must be known in order to calculate the ki-

netic energy term precisely. Because of this, it is challenging to calculate the kinetic

energy precisely. The Hohenberg-Kohn theorems are limited in their applicability

to ground-state systems exclusively. This means that it cannot be used to describe

excited states or dynamics of a system. Another limitation is that the theorem as-

sumes a non-degenerate ground state, which may not always be the case for certain

systems.

2.9 Kohn-Sham (KS) Equation

Kohn and Sham proposed a method to solve the problems that arises in the Hohenberg-

Kohn theorem [63] based on two approximations described as follows [64]:

1. The ground state density can be understood as the ground state of a system

consisting of non-interacting particles in an auxiliary framework.

2. The Hamiltonian of the auxiliary system is formulated using the conventional

kinetic energy operator, while the auxiliary potential is regarded as an effective

local potential.

The Kohn-Sham theorem postulates that the electron density of the ground state

in an interacting system is equivalent to the electron density of the ground-state

in a non-interacting system, provided that an effective potential Veff is employed.

We disregard all forms of interaction between atoms, electrons, and nuclei in a

system that doesn’t interact. This approximation best works for densities which

are smooth and vary slowly [63]. Kohn and Sham considered a many-body, multi

electronic system composed of non-interacting particles. They solve the system using

a modified form of Schrödinger equation for a non-interacting system that produces
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the same value of ground state electron density as an interacting system. The non

interacting wave function of a many body wave function is a Slater determinant

of one electron wave function. One can obtain the wave function by solving this

Schrödinger equation (also refers as Kohn-Sham equation):

ĤKSψi = [− ℏ2

2me

∇2] = εiψi (2.72)

Here, the term Veff refers to effective potential, which compensates error due to

ignoring interaction. The total energy E(E =
∑

i εi) is divided into two parts.

The known component which comes from the non-interacting part. As well as the

unknown component which is also known as exchange-correlation part (Exc[n(r)]).

It contains all the errors that are contain in a non-interacting system as we neglect

all types of interaction between particles. The kinetic energy term is divided into

two parts: the kinetic energy of non-interacting particles (Ta) and the kinetic energy

of interacting particles (Tb). The non-interacting part can be obtain by the equation:

Ta[n(r)] = − ℏ2

2me

∑
i

⟨ψi|∇2
ri
|ψi⟩ (2.73)

The kinetic energy of interacting particles (Tb) can be obtained by approximation

methods like LDA, GGA. Also, the effective potential can be obtained from:

Veff = Vext + VHartree[n(r)] + Vxc[n(r)] (2.74)

Here, VHartree[n(r)] is Hartree potential, which is obtained by:

VHartree[n(r)] =
e2

4πε0

∫
n(r

′
)

|r− r′|
dr

′
(2.75)

And, the exchange-correlation potential Vxc[n(r)] is defined as:

Vxc[n(r)] =
δExc[n]

δn
(2.76)
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From those considerations, the Hamiltonian becomes:

ĤKS = − ℏ2

2me

∑
i

∇2
ri
+ Vext +

e2

4πε0

∫
n(r

′
)

|r− r′ |
dr

′
+
δExc[n]

δn
(2.77)

The major distinction within the formulation and the Hartree formulation is the

fact that the Kohn-Sham formulation involves exchange along with correlation in

the effective potential.

2.9.1 Solving Khon-Shan Equation

In a condensed matter system the KS equation gives a way to obtain the exact

density and energy of the ground state. The process starts with an initial electron

density n(r), usually a superposition of atomic electron density, then the effective

KS potential Veff is calculated and the KS equation is solved with single-particle

eigenvalues and wave functions, a new electron density is then calculated from the

wave functions. This is usually done numerically through some self consistent iter-

Figure 2.1: Flowchart of self-consistency loop for solving Kohn-Sham equation.
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ation as shown in above flowchart. Self-consistent condition can be the change of

total energy or electron density from the previous iteration or total force acting on

atoms is less than some chosen small quantity, or a combination of these individual

conditions. If the self-consistency is not achieved, the calculated electron density

will be mixed with electron density from previous iterations to get a new electron

density. A new iteration will start with the new electron density. This process

continues until self-consistency is reached. After the self-consistency is reached, var-

ious quantities can be calculated including total energy, forces, stress, eigenvalues,

electron density of states, band structure etc.

2.10 Exchange-Correlation (XC) Potential

In DFT, the exchange-correlation potential is a word for how the electrons in a

material interact with each other. It combines the effects of exchange and corre-

lation, which are two basic ideas in quantum physics that explain how electrons

interact with each other. The exchange potential comes from the fact that electrons

are identical objects and follow the Pauli exclusion principle, which says that it is

impossible for two fermions that are identical to inhibit the same quantum state si-

multaneously. The correlation potential comes from the fact that electrons connect

with each other through Coulombic forces, which depend on where and how fast

they are moving. In DFT, to solve the equation (2.77), we also need an expression

for the exchange-correlation potential. For the solution, different theoretical mod-

els and estimates are used to get close to the exchange-correlation potential. The

accuracy of these rough estimates varies on the type of material being modeled and

how it is used. In the next parts, we will talk about and analyze the local density

and generalized gradient approximations, which are two of the most common ways

to solve the exchange-correlation functional.

2.10.1 Local Density Approximation (LDA)

The Khon Sham equation while exactly incorporating the kinetic energy Ta[n(r)],

still leave the exchange correlational functional Exc[n(r)] unsetteled. In Khon Sham
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equation let us introduce the local density approximation proposed by Khon and

Sham [65]. The kinetic energy Ta[n(r)] is regorously treated in the Kohn Sham

schame, we can use the uniform electron gas formula solely for the unknown part of

the rest of the energy functional. Thus we introduce the local density approximation

(LDA) for exchange and correlation energy.

ELDA
xc [n] =

∫
n(r)ϵxc(n)dr (2.78)

Where, ϵxc[n(r)] indicates the exchange and correlation energy per particle of a

uniform electron gas of density n. The corresponding exchange correlation potential

then becomes,

V LDA
xc (r) =

EPBE
xc [n]

δn(r)
= ϵxc(n(r)) + n(r)

Exc[n]

δn(r)
(2.79)

and the Khon-Sham equations read,

[−1

2
∇2 + V (r) +

∫
n(r

′
)

|r− r′ dr
′
+ V LDA

xc (r)]Ψ = ϵiΨi (2.80)

This self consistent solution defines the KS local density approximation, which is

the literature is usually simply called local density approximation (LDA) method.

The function ϵxc(n) can be devided into exchange and correation contributions,

ϵxc(n) = ϵx(n) + ϵc(n) (2.81)

The exchange part is already known given by the Dirac exchange energy functional.

ϵx(n) = −Cxn
1
3 (r) (2.82)

where,

Cx =
3

4
(
3

π
)
1
3 (2.83)
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2.10.2 Generalized Gradient Approximation (GGA)

The LDA neglects the inhomogeneties of the real charge density which could be

very different from the homogenous electron gas (HEG). The exchange correlation

(xc) energy of inhomogeneous charge density can be significantly different from

the HEG result. This leads to be the development of verious generalized-gradient

approximations (GGA) [66] which include density gradient corrections and higher

spatial derivatives of the electron density and give better result than LDA in many

cases. Three most widely used GGA’s are the from proposed by Becke, Perdew et

al., Burke and Enzerhof. The definition of the xc energy functional of GGA is the

generalized form in the equation of LSDA to include corrections [67],

ELSDA
xc [n↓(r), n↑(r)] =

∫
n(r)ϵhome

xc [n↓(r), n↑(r)]dr (2.84)

Where, xc energy density ϵhome
xc [n(r)] is a function of the density alone and is

composed into exchange energy density ϵhome
xc [n(r)] and correlation energy density

ϵhome
C [n(r)]. So that the xc energy functional is decomposed into exchange energy

function ELDA
xc [n(r)] linearly. From density gradient ∇(r) as,

EGGA
xc [n↓(r), n↑(r)] =

∫
n(r)ϵhome

xc [n↓(r), n↑(r), |∇ ↑ (r)|, |∇ ↓ (r)|, ...]dr

=

∫
n(r)ϵhome

x n(r)Fxc[n↓(r), n↑(r), |∇ ↑ (r)|, |∇ ↓ (r)|, ...]dr
(2.85)

Where, Fxc is dimensionless and ϵhome
xc n(r) is the exchange energy density of the

unpolarized HEG. Fxc can be decomposed linearly into exchange contribution Fxc

= Fx + Fc. Generally, GGA works better than LDA, in pridicting binding energy

of molecules and bond length, crystal lattice constants, especially the system where

charge density varried rapidly. In case of ionic crystall, GGA overcorrects LDA

results where the lattice constants of LDA fit well than GGA. But in case of transi-

tion metal oxides and rare-earth element, both LDA and GGA perform badly. This

drawback leads to approximations beyond LDA and GGA.
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2.10.3 Local Spin Density Approximation (LSDA)

In the majority of the exchange-correlation functionals, the homogenous electron

gas is used. Particularly, in local density approximation, the density, n is considered

at each point in space and the homogenous electron gas model is applied locally

using the density only [68]. In the local spin density approximation (LSDA), the

electron density for individual spin components, nα(r) and nβ(r) are used. Using

the homogeneous electron gas model, the exchange energy functional is known as

Dirac exchange and has a very simple mathematical form

Ex
LSDA = −3

2
(
3

4π
)

1
3
∫
[nα(r)

4
3 + nβ(r)

4
3 ]dr (2.86)

The general form of the local spin density approximation for the correlation energy

functional has the following form

ELSDA
c [nα, nβ] =

∫
n[rεc(nα(r), nβ(r)]dr (2.87)

where, εc[nα(r), nβ(r)] is the correlation energy per electron in a homogeneous elec-

tron gas. The exact form is unknown but many approximations to εc[nα(r), nβ(r)]

exist. LSDA gives fairly good results for equilibrium geometries and vibrational

frequencies for covalently bonded molecules but has a tendancy to overbind atoms

because the molecule is overstabilized compared to the separate atoms. Moreover,

the results are bad for molecules containing hydrogen bonds and van der Waals

complexes.

In LSDA, the exchange energy is typically underestimated by 10% and the correla-

tion energy overestimated by 100%. The total energy is too high, the gap between

occupied and unoccupied orbitals (or bands in solid state physic) is too low. More-

over, LSDA favor the dn+1s1 configuration over the dns2 in the 3d transition metal

atoms. Gunnarsson and Jones showed that the major source of error in LSDA comes

from the exchange energy. A source of error in the calculation of the exchange energy

is the self-interaction repulsion present in LSDA. This error is related to the fact that

an electron sees all other electrons including itself. The presence of such an error is
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easy to verify, since the exchange energy of any one-electron system should be zero.

Perdew and Zunger have proposeda self-interaction corrected LSDA functional that

reduced the error below 3% for the exchange energy. Improvement was also obtained

in the LSDA correlation energy, in the total energy, in the orbital eigenvalues, in

the long range behavior of Vxc(r), in the shape of the exchange-correlation hole and

consequently in the electronic density.

2.10.4 LDA+U Method

Strongly correlated system usually contain transition metal or rare-earth metal ions

with partially filled d or f shells. Because of the orbital-independent potentials in

LSDA and GGA, they cannot properly describe such systems. The total energy in

LSDA+U method [69] is given by,

ELDA+U
tot [nσ(r), nσ] = ELSDA[nσ(r)] + EU [nσ]− Edc[n(r)] (2.88)

where, σ = spin indexes, n(r) = electron density for spin-σ electrons, nσ = density

matrix of f or d electron for spin-σ electrons, ELSDA[nσ(r)] = standard LSDA energy

functional, and EU [n(r)] = electron-electron coulomb interaction energy. The last

term is double counting term which remove the average LDA energy contribution

of d or f electrons from the LDA energy

Edc[n(r)] =
1

2
UN(N − 1)− 1

2
J [N↑(N↑ − 1) +N↓(N↓ − 1)] (2.89)

where, N = N↑ +N↓. U and J are coulomb and exchange parameters. If exchange

and non sphericity is neglected then,

ELDA+U
tot = ELDA +

1

2
U
∑
i ̸=1

ninj −
1

2
UN(N − 1) (2.90)

The orbital energies ϵi are derivative of above equation with respect to orbital oc-

cupations ni:

ϵi =
∂E

∂ni

= ϵLDA + U(
1

2
− ni) (2.91)
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For ni = 1, LDA orbital energiesare shifted by −U
2
and by U

2
and by for unoccupied

orbitals( ni = 0), resulting the upper and lower Hubbard bands, which opens a gap

at the Fermi energy in transition metal oxides. In case of double counting term,

it has two different treatment: around mean-field (AMF) and fully localized limit

(FLL). The former is most suitable for small U system and the letter for large U

system. The energies for double counting is given by,

EAMF
dc =

1

2
UN2 − U + 2lJ

2l = 1

1

2

∑
σ

N2
σ (2.92)

and,

EAMF
dc =

1

2
UN(N − 1)− 1

2
J
∑
σ

Nσ(Nσ−1) (2.93)

2.10.5 Hybrid Functional

Hybrid functional approximation is a sort of computational method employed in

DFT studies. It was created by A. Becke [70]. Hybrid functionals try to get around

this problem by mixing parts of both the local density approximation (LDA), and

the generalized gradient approximation (GGA). In this method, the first exchange-

correlation energy was written in the format:

Ehyb
xc = γEKS

x + (1− γ)EGGA
xc (2.94)

Here, EKS
x is the exchange energy calculated with the exact Kohn-Sham wave func-

tions. And γ is known as fitting parameter. Currently, there are numerous popular

hybrid functionals available, including B3LYP, PBE0, and HSE06. Each of these

functionals has its own unique strengths and weaknesses, which depend on the spe-

cific material and property being studied. The main benefit of hybrid functionals

is that they blend the best parts of both LDA and GGA functionals. LDA does a

good job of describing how the density changes slowly, but it doesn’t account for

the exchange-correlation energy in systems where the density changes. GGA, on

the other hand, gives a better picture of the exchange correlation energy, but it

often overestimates or underestimates certain properties, such as band-gaps, bond
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lengths, and reaction energies. Hybrid functionals get around these problems by

adding a small amount of exact Hartree-Fock exchange to the normal GGA func-

tional. This makes the predicted properties more accurate, especially for systems

with big band-gaps, states that are localized, and atoms of transition metals. The

result is a hybrid functional that is a mix of LDA and GGA parts. This gives a

good balance between accuracy and cost of processing.

34



Chapter 3

Outcomes and Interpretation

Computational Details

First-principle calculations of CaZrO3−xSex (x = 0, 1, 2, 3) were performed using the

full-potential linearized augmented plane wave (FP-LAPW) approach [71,72] as im-

plemented in the WIEN2k code [73], which works within density functional theory

(DFT) [74]. The exchange and correlation potential [75] is used within the general-

ized gradient approximations (GGA) scheme of Perdew-Burke-Ernzerhof (PBE) to

solve Khon-Sham equation. In the full potential scheme the unit cell of the crystal is

separated into two different regions: atomic spheres and interstitial site [76]. Within

the atomic sphere the wave function is extended in atomic-like functions (radial part

times spherical harmonics) while in the interstitial region the wave function is pre-

sented in a plane wave basis. The energy convergence function used RMTKmax = 8,

where, Kmax is the size of the largest k vector in the plane wave expansion and RMT

is the radius of the smallest atom in the unit cell. The energy separation between

core and valence states has been set to -6.0 Ry. Inside the sphere the angular mo-

mentum vector, lmax = 10, while the maximum values of the Gaussian factor, Gmax

= 16 (a.u.)−1. The limit for energy convergence and charge convergence for the iter-

ation process was set to 10−5 Ry and 10−3 e respectively. From the energy-volume
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calculations, we found the optimal ground state parameters using the Murnaghan

equation of state. The number of states that are accessible for each interval of energy

per unit volume was calculated by analyzing the density of states. We have used

10×10×10 k-mesh for the Brillouin zone integration for structural and electronic

properties calculations, and 20×20×20 k-mesh used for optical properties calcula-

tions. To calculate elastic constants, we used Charpin’s approach as implemented in

WIEN2k [77]. Finally, mechanical poperties of the CaZrO3−xSex (x = 0, 1, 2, 3) were

calculated using second-order derivative within WIEN2k package to evaluate elastic

tensor of a cubic and tetragonal phase structure. As the structure is cubic, there

are only three independent constants C11, C12, and C44. For tetragonal structure,

there are six elastic constants C11, C12, C13, C33, C44, and C66. These independent

elastic constants are used to determine the mechanical stability of CaZrO3−xSex

(x = 0, 1, 2, 3) perovskites.

3.1 Structural Properties

CaZrO3 is categorized under the spatial symmetry of the Pm3̄m (221) crystallo-

graphic space group and has a cubic perovskite crystal structure, as illustrated in

Figure 3.1(a). The arrangement of atoms is as follows: Ca locates at the center of

the unit cell at coordinates (0, 0, 0), Zr occupies at the corner position (0.5, 0.5, 0.5),

and O resides at the center of the face (0.5, 0.5, 0). We used atomic locations and

the generalized gradient approximation (GGA) to achieve optimal lattice param-

eters and unit cell volume across all CaZrO3−xSex (x = 0, 1, 2, 3) crystal phases.

Regarding cubic CaZrO3, replacing 1 or 2 selenium atoms results in the formation

of CaZrO2Se in Figure 3.1(b) and CaZrOSe2 in Figure 3.1(c) respectively. Atomic

locations in CaZrO2Se are as follows: Ca (0, 0, 0), Zr (0.5, 0.5, 0.5), O (0.5, 0, 0.5)

and Se (0.5, 0.5, 0). For CaZrOSe2, the positions of the atoms can be described as

follows: Ca (0, 0, 0), Zr (0.5, 0.5, 0.5), O (0.5, 0.5, 0) and Se (0.5, 0, 0.5).
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Figure 3.1: The crystal structure of compounds: a) CaZrO3, b) CaZrO2Se, c) CaZrOSe2
and d) CaZrSe3.

Importantly, this substitution instigates a change in the crystal structure from cubic

to tetragonal symmetry, and the resulting phases confirm the space group P4/mmm

(123). Furthermore, CaZrSe3 is created in the CaZrO3 molecule when 3 selenide

atoms are introduced as replacements shown in Figure 3.1(d). This newly formed

compound has the same space group and atomic coordinates as Ca, and it still

has a cubic structure similar to that. The physical characteristics and electronic

band structure of the system are significantly influenced by this phase transforma-

tion. Using two cubic frameworks, CaZrO3 and CaZrSe3, we optimized volume and

found the corresponding minimal energy volumes, which are elegantly dipicted in

Figure 3.1(a), (d). The stability of these structures was evaluated, and the intricate

relationship between total energy and volume was investigated, using the state equa-

tion obtained from the Birch-Murnaghan model [78]. We embarked on a two-step

optimization process for the tetragonal structures, CaZrO2Se and CaZrOSe2.
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Table 3.1: The optimized structure information and band gap (Eg) value of CaZrO3−xSex
systems.

Compounds Space group a (Å) b (Å) c (Å) V (Å3) Eg (eV)

CaZrO3 Pm3̄m 4.14 4.14 4.14 252.67 3.34

CaZrO2Se P4/mmm 4.13 4.13 5.52 334.93 1.94

CaZrOSe2 P4/mmm 5.35 5.35 4.01 410.38 0.71

CaZrSe3 Pm3̄m 5.23 5.23 5.23 509.18 0.23

In the initial phase, we controlled the volume while keeping the c/a ratio constant.

Further refinement was achieved by maintaining the equilibrium volume while mod-

ifying the c/a ratio, an adjustment made through a parabolic fitting approach.

Subsequently, employing the equation of state according to Birch-Murnaghan, we

matched the resultant volume variation, elegantly displayed in Figure 3.2(b), (c).

The Brich-Murnaghan’s equation of state can be represented as follows:

Etot(V ) = E0 +
B0V

B
′
0(B

′
0 − 1)

[B
′

0(1−
V0
V
) + (

V0
V
)B

′
0−1] (3.1)

In this equation, E0 is the energy of the ground state, B0 is the bulk modulus and

B′
0 is its derivatives, V0 and V are the ground state unit cell volume.

The comprehensive findings from this geometric optimization, encompassing lattice

parameters and other structural intricacies for both tetragonal and cubic phases, are

documented in Table 3.1. It can be seen from Table 3.1 that the lattice parameter

and unit cell volume are increased when x value increasing from 0 to 3. Furthermore,

the crystal formability of CaZrO3−xSex (x = 0, 1, 2, 3) perovskites can be evaluated

by the tolerance factor (τ). The general formula of tolerance factor (τ) for cubic

perovskites has been computed using the relation [31,79]

τCaZrO3 =
(Ca2+ +O2−)√
2(Zr4+ +O2−)

(3.2)

and,

τCaZrSe3 =
(Ca2+ + Se2−)√
2(Zr4+ + Se2−)

(3.3)
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Figure 3.2: The optimization of the total energy versus unit cell volume of the studied

compounds a) CaZrO3, b) CaZrO2Se, c) CaZrOSe2 and d) CaZrSe3 perovskites.

For tetragonal perovskites [80], we have used the equation

τCaZrO2Se =
Ca2+ + 2O2−+Se2−

3√
2(Zr4+ + 2O2−+Se2−

3
)

(3.4)

and,

τCaZrOSe2 =
Ca2+ + O2−+2Se2−

3√
2(Zr4+ + O2−+2Se2−

3
)

(3.5)

Where, Ca2+, Zr4+, O2−, and Se2− refer to the ionic radii of Ca, Zr, O, and

Se element respectively. These equations have been used to check the satbility of

the studied compounds in their pure state. From Table 3.2 their tolerance factor

shows that effectively such materials are found to be stable in their perovskites

structure. We assessed the chemical durability of the semiconductor CaZrO3−xSex

(x = 0, 1, 2, 3) perovskite by determining its formation energy. The formula is given

below

∆E
CaZrO3−xSex
form =

E
CaZrO3−xSex
total − (AECa

total +BEZr
total + CESe

total +DEO
total)

A+B + C +D
(3.6)
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Table 3.2: Computed tolerance factor (τ) and formation energy (∆E) values for each

compound: CaZrO3, CaZrO2Se, CaZrOSe2, and CaZrSe3.

Compounds Ions Ionic radius (Å) τ (Å) ∆E (eV)

CaZrO3 Ca2+ 1.14 0.82 -4.34

CaZrO2Se Zr4+ 0.80 0.79 -3.44

CaZrOSe2 O2− 1.36 0.79 -2.62

CaZrSe3 Se2− 1.98 0.80 -1.60

In the preceding equation, A represents the number of Ca atoms, B is the count

of Zr atoms, and C and D correspond to the quantities of Se and O atoms within

the unit cell respectively. E
CaZrO3−xSex
total , ECa

total, E
Zr
total, E

Se
total and EO

total denote the

overall energies of the CaZrO3−xSex (x = 0, 1, 2, 3) perovskites and the stable forms

of Ca, Zr, Se, and O in their solid structures, respectively. Here are the computed

formation energies mentioned for the compounds: CaZrO3 exhibits 4.34 eV per

atom, CaZrO2Se has 3.44 eV per atom, CaZrOSe2 demonstrates 2.62 eV per atom,

and CaZrSe3 displays 1.60 eV per atom. These values provide insight into the

relative stability of these compounds, shedding light on their chemical behavior.

3.2 Electronic Properties

The electronic properties of CaZrO3−xSex (x = 0, 1, 2, 3) materials, such as band

structure and density of states, can be elucidated by DFT computations. There

are two types of electronic band gaps, direct and indirect. In direct band gap,

the conduction band minima (CBM) and valence band maxima (VBM) are at same

location, while in indirect band gap, CBM and VBM are at different locations. Com-

prehension of the electrical properties of the material requires an understanding of

the band gap, which is the energy difference between conduction band and valence

band. Understanding electronic band structure is also a fundamental requirement

for realizing optical features. The electronic band structure via spin-polarized cal-

culations on employing GGA method are provided in Figure 3.3. In the Brillouin

zone, points of high symmetry are R(0.5, 0.5, 0.5), Γ(0, 0, 0), X(0, 0.5, 0) and M(0.5,

0.5, 0) displayed in bandstructures for CaZrO3−xSex (x = 0, 1, 2, 3) perovskites.
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Figure 3.3: The calculated electronic band structures of CaZrO3−xSex systems a) spin-

up and b) spin-down for CaZrO3, c) spin-up and d) spin-down for CaZrO2Se, e) spin-up

and f) spin-down for CaZrOSe2 and g) spin-up and h) spin-down for CaZrSe3 along some

high symmetry directions of brillouin zone.
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It can be seen from this figure that the studied compounds are semiconductors with

indirect band gap (R-Γ). It is also observed that the band gap decreases gradually

from 3.44 eV to 0.23 eV, when the ratio of Se doping increases from 0 to 3 as a result

of the overlapping states caused by the increasing size of chalcogens. The obtained

energy band gap values are 3.44 eV, 1.94 eV, 0.71 eV and 0.23 eV for CaZrO3,

CaZrO2Se, CaZrOSe2 and CaZrSe3, respectively. Again, when x = 3, selenium have

the significant contribution comes Se-p states in the valence band regions in Figure

3.4. We assumed that selenium’s influence is the main factor driving changes in the

band gaps of these compounds. The calculated energy gap values are represented

in Table 3.3. The suitable band gap value of 1.94 eV makes the CaZrO2Se material

a potential candidate for optoelectronic application in photovoltaic. On the other-

hand, the band gap energy 0.71 eV makes CaZrOSe2 material a favorable candidate

for photovoltaic applications. Moreover, the bandgap values of CaZrO3 and CaZrSe3

perovskites make them a potential candidate for other optoelectronic applications.

The investigation focused on analyzing the total and partial density of states (DOS)

in order to understand more about the orbital contributions that lead to atomic

bonding and the development of valence and conduction states. A strong hybridiza-

tion between these orbitals is indicated by the partial density of states (PDOS) plot

for CaZrO3 in Figure 3.4(a), which shows that the Ca-d, Zr-d, and O-p states are

important in creating the valence band in the deeper region. There is a noticeable
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Figure 3.4: Representation of total and partial density of states (DOS) of (a) CaZrO3,

(b) CaZrO2Se, (c) CaZrOSe2, and (d) CaZrSe3 systems using the GGA-PBE method.
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decrease in the involvement of Ca-d states close to the Fermi level in the valence

band when (x = 1, 2, 3) selenium atoms are substituted for CaZrO3. However, this

reduction is compensated by a rise in participation of Se-p states in the valence band.

As a consequence, the substitution of Se for O in CaZrO3 results in modifications

to the electronic structure of the material, which in turn affects the functions of the

atomic orbitals in the valence band. More precisely, the contribution of Ca-d states

to the valence band diminishes as Se-p states start to make a substantial contribu-

tion. From this figure we can noted that the studied compounds are semiconductors

along with there is no change between up spin and down spin that indicates perfect

symmetry. A significant hybridization takes place between O-p and Zr-d states in

the conduction band of CaZrO3 at the Fermi level. At the Fermi level, Se-p states

start to contribute actively and hybridize with Zr-d levels when oxygen is replaced

with 1, 2, or 3 selenium atoms. Zirconium (Zr-d) is thought to have a key role in

structuring the valence and conduction bands. This is because pseudo-states are

produced. From Figure 3.3, we can note that the studied compounds are semicon-

ductors. Also, the perfect symmetry between majority and minority spins indicate

that the materials are non-magnetic.

3.3 Optical Properties

The optical characteristics of a material are greatly influenced by the behavior of

electrons, particularly their rates of transition and recombination. Electronic tran-

sitions in semiconductor materials can be divided into two classes: intra-band and

inter-band. For optical applications only inter-band transitions are responsible for

excitations and recombinations [81, 82]. The optical nature of any material is ex-

plained by the imaginary dielectric function ε(ω) which describes the relationship

between a material’s response to incident photons and its energy given by Ehrenreich

and Cohen’s equation state as follows [83]:

ε(ω) = ε1(ω) + iε2(ω) (3.7)
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Here, ω denotes the angular frequency of electromagnetic radiation on the material,

ε1(ω) and ε2(ω) indicate polarization and absorption respectively [83]. Dielectric

function’s imaginary part ε2(ω) is given as follows:

ε2(ω) =
4π2e2

m2ω2
Σi,j

∫
Bz

⟨i|M |i⟩2 × f(i)(1− f(i))δ(Ej,k − Ei,k − ω)d3k. (3.8)

Initial states are denoted by i and final states by j in this instance. The charge, elec-

tron mass, frequency, and crystal wave vector are denoted by the parameters e,m, ω,

and k, respectively. As Ex,y represents the free electron energy and M the momen-

tum operator, f(i) is the Fermi distribution function and the dielectric function’s

real part ε1(ω) can be determined by using the Kramers-Kronig equation [84]:

ε1(ω) = 1 +
2

π
P

∫ ∞

0

ωε2(ω)
dω

ω2 − ω2
, (3.9)

where, P is the principal value of the integral. From ε1(ω) and ε1(ω), the following

relationships are used to calculate all other optical parameters, such as refractive

index n(ω), absorption coefficient α(ω), optical conductivity σ(ω), reflectivity R(ω),

and energy loss function L(ω) [84, 85].

n(ω) =
1√
2
([ε21(ω) + ε22(ω)]

1
2 + ε1(ω))

1
2 (3.10)

α(ω) =

√
2ω

C
([ε21(ω) + ε22(ω)]

1
2 + ε1(ω))

1
2 (3.11)

σ(ω) =
ω

4π
ε2(ω) (3.12)

R(ω) =
[n(ω)− 1]2 + k2(ω)

[n(ω) + 1]2 + k2(ω)
(3.13)

L(ω) =
ε2(ω)

E2
2(ω) + E2

1(ω)
(3.14)

3.3.1 Real and Imaginary Dielectric Function

The real dielectric function elaborates the dispersion and polarization of light on

interaction with material of a slightly changing refractive index. The frequency of
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light depends upon phase velocity which reacts to maximum dispersion and polar-

ized light at plasma resonance of lattice waves. The values of real part, ε1(ω) dielec-

tric function have been depicted in Figure 3.5(a). The static dielectric function of

CaZrO3, CaZrO2Se, CaZrOSe2 and CaZrSe3 are 4.0, 6.0, 9.5 and 14.5 respectively.

The ε1(0) increases gradually with the change of anion oxygen to selenium. The

static dielectric function is directly related to how easily the material’s dipoles or

charge distributions can be polarized in the presence of an electric field. It can be

seen from Figure 3.5(a) that the four compounds reach peak values in the energy

range of 1− 3 eV. When the ratio of Se doping increases from 0 to 3, the peak value

of ε1(ω) increase successively and go to lower energy region. The plot indicates an

increasing trend with photon energy and reaches a maximum value of 8.5 (at 5 eV),

9.5 (at 3 .2 eV), 12 (at 2.5 eV), and 14 (at 1.0 eV) for CaZrO3, CaZrO2Se, CaZrOSe2

and CaZrSe3 respectively. From the peaks of maximum intensity, it becomes clear

that the resonance frequency is fully polarized in a direction perpendicular to elec-

tric field of the incident light. Moreover, it shifts toward lower photon energy after

increasing doping ratio. Furthermore, over the resonance, the peaks started droping

to minimum value and after that entering the negative zone.
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Figure 3.5: Energy versus dielectric constant of CaZrO3−xSex (x = 0, 1, 2, 3) perovskites.

The imaginary part of dielectric function ε2(ω) describes the material’s absorption

coefficient and ability of the material to interact with electromagnetic radiation.

It possesses a direct relationship with the electronic band gap. The transition of

electrons between energy levels at different states leads to the formation of imag-

inary part of dielectric function. The imaginary part of dielectric function ε2(ω)

for CaZrO3−xSex (x = 0, 1, 2, 3) are plotted in Figure 3.5(b). The first peak for

all compounds is caused by the transition from the valence band (primarily made

up of p-orbitals) to the conduction band (made up of p and d-orbitals), when the

photon’s energy rises. Such transitions also related to the second peak. Imaginary

part of dielectric function has large number of peak because of transition between

unoccupied and occupied states of valence and conduction band as shown in Figure

3.5. From 0-3.34 eV, 0−1.94 eV, 0−0.71 eV , 0−0.23 eV no transition take place for

CaZrO3, CaZrO2Se, CaZrOSe2, and CaZrSe3 respectively because incident photon

has less energy than band gap between valence and conduction band. In this inter-

val, instead of taking electron from valence band to conduction band the electron

continuously radiate energy. The threshold energy for transition is around 3.34 eV,

1.94 eV, 0.71 eV and 0.23 eV. We can note that these values are closely related

to the electronic band gap. We can see that there is a strong correlation between

these values and the electrical band gap. Furthermore, it is evident that for CaZrO3,
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CaZrO2Se, CaZrOSe2, and CaZrSe3, the ε2(ω) reaches the greatest peaks at 5.67,

5.12, 4.10, and 2.12 eV. The values of ε2(ω) fall negative region as energy increases

due to reflection of incident light. Subsequently, the absorption start to take place

and its value rises as a result of the point contributing to ε2(ω) beginning to rise

rapidly.

3.3.2 Refractive Index and Absorption Coefficient

In order to further understand the optical properties of CaZrO3−xSex (x = 0, 1, 2, 3)

materials, we calculated the refractive index, n(ω) of the materials from real and

imaginary parts of the dielectric function. The refractive index, n(ω) is used to de-

termine the amount of light bent or refracted as it enters into a substance. Further-

more, the phase velocity of an electromagnetic wave in a medium can be calculated

by n(ω). The refractive index n(ω) reflects the dispersion of light and transparency

of the materials are shown in Figure 3.6(a). According to the order in the diagram,

the refractive index zero energy n(0) of the CaZrO3−xSex (x = 0, 1, 2, 3) compounds

are 2.00, 2.40, 3.10, and 3.85 respectively. The values of static dielectric function

and static refractive index are related to each other by n2(0) = ε1(0) where, ε(0) and

n(0) are used to find applicability to interact with light and control its propagation

through the material. This is the conformation range of n(ω) from 2 to 3 is ideal

for visible light solar cells. In addition to, the value of n(0) has shown an increasing

trend with photon energy and reaches a maximum of 3.0 at 5.4 eV for CaZrO3, 3.2

at 3.4 ev for CaZrO2Se, 3.56 at 2.4 eV for CaZrOSe2, and 4.4 at 1.0 eV CaZrSe3

respectively. After that, with further increase in photon energy, n(0) declines. This

implies that CaZrO3−xSex (x = 0, 1, 2, 3) should be preferable for optical devices.

The optical absorption coefficient α(ω) denotes the amount of energy absorbed by

a substance per unit length similar to the imaginary dielectric function. This ab-

sorption behavior is influenced by various factors like the crystal’s band gap and

molecular structure. In particular, optical absorption happens when the frequency

of incoming photons matches the atomic transition frequency within the material.

Each semiconductor material has a light absorption threshold below which it
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Figure 3.6: The calculated optical parameter of CaZrO3−xSex (x = 0, 1, 2, 3)

compounds, (a) refractive index n(ω), and (b) absorption coefficient α(ω).
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does not function. The interaction of photon with the valence electrons makes them

capable of light absorption over this threshold limit. The relationship α = 4πk/λ

represents the maximum rate of light degradation. Figure 3.6(b) illustrate the behav-

ior of absorption coefficient α(ω) as a function of photon energy (eV). From Figure

3.6(b) and Figure 3.5(b), both absorption coefficient and imaginary part of dielectric

function are analogous to each other sinch each explains absorption of light. From

the figure 3.6(b), the threshold value of α(ω) appears to be 3.44 eV, 1.94 eV, 0.71

eV, and 0.23 eV for CaZrO3, CaZrO2Se, CaZrOSe2, and CaZrSe3 respectively. Be-

low threshold energy, no absorption occurs that shows transparent energy range for

the material, which correspond to the forbidden energy gaps. As the photon energy

increases, the α(ω) increases and reaches maximum value of 160 (at 10.8 eV), 154 (at

11.5 eV), 145 (at 11.4 eV) and 135 (at 9.0 eV) for CaZrO3, CaZrO2Se, CaZrOSe2,

and CaZrSe3 respectively. This sharp increase in α(ω) corresponds to limit of in-

cident photons reaching absorption edge. The highest absorption for CaZrO3−xSex

(x = 0, 1, 2, 3) perovskites is observed in the ultraviolet (UV) region. Higher energy

regions exhibit more variations because the electron’s energy is absorbed from the

incoming photons with different excitation rate. After that, when the absorption

coefficient starts decreasing with further increase in photon energy (eV), revealing

a semiconducting nature of computed materials.

3.3.3 Optical Conductivity and Reflectivity

The optical conductivit,y σ(ω) is an essential parameter that assists in identifying

a material’s electromagnetic response. In another explanation, the optical conduc-

tivity represents the amount of photons that travelled through the samples. When

a sample is subjected to a strong electric field, it reveals the electrical conductivity,

and for natural frequencies, it correlates the current density to the electric field.

The optical conductivity and electrical conductivity improve with increasing pho-

ton absorption. Similar characteristics exist in optical conductivity and absorption

spectra, as presented in Figure 3.7(a), owing to the escape of free carriers from the

valence band to the conduction band when it absorbs energy.
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Figure 3.7: The calculated optical parameter of CaZrO3−xSex (x = 0, 1, 2, 3)compounds,

(a) optical conductivity σ(ω), and (b) reflectivity R(ω).
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As we can be seen in this Figure 3.7(a), the optical conductivity spectra start from

3.44, 1.94, 0.71 and 0.23 eV and reaches a maximal peak at 5.70, 4.40, 4.50, and 2.00

eV for CaZrO3, CaZrO2Se, CaZrOSe2, and CaZrSe3, respectively. Then, it decreases

with certain oscillations to attain low values close to 0, which demonstrate that no

electrons are found in this region. The σ(ω) also follow a comparable trend to

that of the dielectric constants because when light of suitable frequency falls on

materials surface, absorption, reflection, transmission and conduction take place

simultaneously. It is also noted that the peaks of σ(ω) are higher for CaZrO2Se and

CaZrOSe2 compared to CaZrO3 and CaZrSe3

Reflectivity is another important optical property for the solar cell and other ap-

plications of the perovskite. The fractional amount of incident light or energy that

is reflected from the surface of the surface materials can be investigated through

reflectivity denoted as R(ω) as shown in Figure 3.7(b). The figure shows that under

the band-gap energy, CaZrO3−xSex (x = 0, 1, 2, 3) perovskites has reflectivity of the

incident light. After passing through the band-gap energy, it suddenly gives a bigger

pick with increasing energy and move on. In the visible region, both compounds

exhibit small reflection values, which are considered to minimal influence on the effi-

ciency of a device. However, at higher energys beyond 9 eV, the reflectivity displays

larger values due to the presence of negative ε1(ω) in that range. The low reflec-

tivity values suggest that these materials can be effectively employed as absorbing

materials in solar cells and as coating materials to minimize reflections.

3.3.4 Energy Loss Function and Extinction Coefficient

Another important factor is to measure energy loss function denoted as L(ω) which

represents inter-band, intra-band, and plasmonic interactions. The energy loss func-

tion, L(ω) describes loss of energy of the first electron passing through a material. It

is associated with the collective oscillation frequency of the valance electron. More-

over, the optical loss is a measure of energy loss through scattering, dispersing, and

heating, as illustrated in Figure 3.8(a). In the electron energy loss function plots for

CaZrO3−xSex (x = 0, 1, 2, 3) compounds, the presence of peaks indicates light
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Figure 3.8: The calculated optical parameter of CaZrO3−xSex (x = 0, 1, 2, 3)

compounds (a) Energy loss function, L(ω) and (b) extinction coefficient, k(ω).
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generated characteristic energy of excitions. Typically, this energy loss phenomenon

initiates within the energy limit of approximately 0.23−3.5 eV for all studied com-

pounds. Peaks in energy loss function, L(ω) provides an overview of plasma res-

onance and its corresponding frequencies, also known as plasma frequencies. Im-

portantly, the plots show no scattering events occurs at energies lower than the

materials bandgap. Interestingly, in the visible region, the value of optical loss is

almost negligible (1.77−3.10 eV) as compared to in the ultraviolet region (3.10−12

eV) for CaZrO3−xSex (x = 0, 1, 2, 3) perovskites respectively, confirming the stud-

ied materials suitability in visible domain of electromagnetic spectrum to realize

excellent optoelectronic applications.

The extinction coefficient, k(ω) of a material provide insights into its capability to

absorb incoming photons and its speed, respectively [86]. The parameter can be

expressed as:

k(ω) =
1√
2
(
√
[ϵ21(ω) + ϵ22(ω)]− ϵ1(ω))

1
2 . (3.15)

The extinction coefficient, k(ω) shows the attenuation of light like imaginary part

of dielectric function [87]. In Figure 3.8(b), the graph demonstrates the extinction

coefficient, k(ω) for CaZrO3−xSex. For all the compounds, k(ω) remains at 0 within

the energy band gap range. As the light energy is greater than the energy band gap,

the maximum values for all compounds occur between 1.5 eV and 7 eV.

3.4 Mechanical Properties

The measurement of elastic constants is essential to investigate a material’s elastic

properties since they define how a material response to external forces and shed light

on its mechanical properties. The mechanical toughness and stability of a material

are thus exposed by such constants. The Charpin approach was used to calcu-

late elastic constants for a cubic crystal with three independent constants C11, C12

and C44, where C11 represents the stiffness of materials against their strains, C12

indicates the materials shear stress, and C44 signifies the resistance against shear

deformation. While the tetragonal phases perovskites have more additional inde-
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pendent elastic constants C33, C66 and C16. These constants can be used to relate

the mechanical response to the ductility or fragility of a material when it deforms in

an elastic domain. In this work, the elastic constants for CaZrO3−xSex perovskites

were examined using the GGA functional. The calculated elastic constants of the

studied compounds are represented in Table 3.3.

Table 3.3: Calculated elastic constant of CaZrO3−xSex (x = 0, 1, 2, 3) perovskites.

Parameters CaZrO3 CaZrO2Se CaZrOSe2 CaZrSe3

C11 264.54 263.39 136.23 131.72

C12 118.19 107.28 50.13 23.31

C13 - 22.89 10.07 -

C33 - 131.37 256.22 -

C44 89.06 49.40 20.81 12.00

C66 - 92.61 30.66 -

For cubic symmetry systems CaZrO3 and CaZrSe3, the examined elastic constants

are positive which meets with the Born stability criteria [88] C11 > 0, C12 > 0, C44 >

0, C11 + 2C12) > 0, C11 − C12 > 0, and B > 0 a mechanically stable state for both

of the chosen materials is predicted. C11 > |C12|, 2C2
13 < C33(C11 + C12), C44 > 0

and C66 > 0 are the mechanical stability condition [89] for tetragonal CaZrO2Se and

CaZrOSe2. The calculated elastic constant shows that the studied compounds are

mechanically stable. The elastic constants were then used to calculate the elastic

moduli i.e. bulk modulus (B), shear modulus (G), and Young’s modulus (Y ) by the

Hill’s formula [90], which is the average of Voight and Reuss assumptions as follow

B =
BV +BR

2
, (3.16)

where, BV and BR denote the Voight and Reuss bulk moduli respectively.
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The bulk modulus (B) is the measure of how resistant to compression the material

is therefore the larger the bulk modulus, the better the resistant to volume defor-

mation. The bulk modulus for cubic structure is a linear combination of C11 and

C11, so we can write [91]

B =
C11 + 2C12

3
. (3.17)

In case of tetragonal system, the bulk modulus were calculated by the following

equation [92]

B =
2(C11 + C12) + C33 + 4C13

9
. (3.18)

The bulk modulus of CaZrO3−xSex (x = 0, 1, 2, 3) compounds changes with the

change of x value. Among the studied compounds, CaZrO3 have higher B value of

166.98 GPa while CaZrSe3 recorded lowest value 59.45 GPa of B.

The shear modulus (G) was estimated by Hill using Voigt’s (GV ) and the Reuss’s

(GR) approximations for the cubic phase structure [93]

GV =
1

5
(C11 − C12) + 3C44. (3.19)

GR =
5C44 × (C11 − C12

4C44 + 3C11 − C12)
. (3.20)

G =
GV +GR

2
. (3.21)

And the following equations of shear modulus (G) for tetragonal phase structures [93]

is

GV =
C11 + C12 + 2C33 − 4C13 + 12C44 + 12C66

30
(3.22)

GR =
5
2
[(C11 + C12)C33 − 2C2

13]C44C66

3BC44C66 + [(C11 + C12)C33 − 2C2
13](C44 + C66)

(3.23)

G =
GV +GR

2
(3.24)

The ability of a material to withstand transverse deformations is measured by its

shear modulus, which is a function of its hardness. The high shear modulus demon-

strates that the material cannot be easily changed in shape. Table 3.4 makes this
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quite evident of all studied compounds, the CaZrSe3 compound have the least capac-

ity to resist shape change, with a shear modulus (G) value of 28.88 GPa. Materials

with high B and G values have high melting points, which suggests that CaZrO3

would have a higher melting point than CaZrO3−xSex (x = 0, 1, 2, 3) compounds.

The ratio of the linear stress to the strain is known as the Young’s modulus (Y ).

Larger values of Y indicate that the material is stiffer. Young’s modulus, (Y ) is

calculated in terms of shear (G) and bulk modulus (B) as follows [93],

Y =
9BG

3B +G
. (3.25)

Table 3.4: Calculated bulk modulus B (GPa), shear modulus G (GPa), Young’s mod-

ulus Y (GPa), Poission ratio ν, Cauchy pressure PC (GPa), Pugh ratio k, anisotropy A,

Kleinman parameter η, and Debye temperature θD (K) for CaZrO3−xSex (x = 0, 1, 2, 3)

perovskites.

Parameters CaZrO3 CaZrO2Se CaZrOSe2 CaZrSe3

B 166.98 107.15 74.36 59.45

G 82.70 71.96 45.02 28.88

Y 212.95 176.38 112.37 74.57

ν 0.29 0.23 0.25 0.29

PC 29.14 57.88 29.95 11.13

k 2.03 1.43 1.93 2.57

A 1.22 0.63 0.48 0.22

η 0.58 0.55 0.45 0.33

θD 607.33 494.34 342.45 253.72

Another factor is the Poisson ratio (ν) is a measure of the elastic behavior of a ma-

terial under load, representing how much a material contracts in the perpendicular

direction when stretched. ν gives the information about the hardness and stiffness

of material. For cubic and tetragonal systems, Poisson’s ratio can be drived from
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the elastic moduli using the following equation [94]

ν =
3B − 2G

2(3B +G)
. (3.26)

where, B is bulk modulus and G is shear modulus. In cubic systems, the symmetry

is relatively high, and the poission ratio is opten isotropic (the same in all direction).

For materials with a cubic crystal structure, the typical range of Poission ratio is

0.20 ≤ ν ≤ 0.30 exhibits a mix of ionic and covalent character. The lower end of

the range suggests more ionic character, while the higher end may indicate some

covalent character [95]. Tetragonal systems are less symmetric than cubic systems,

and the elastic properties can vary more significantly in different directions. The

Poission ratio for tetragonal structures typically falls within the range 0.25 ≤ ν ≤

0.35 [95]. In this range the presence of covalent bonding is typically stronger due to

the distortion in the structure, resulting in slightly higher Poission ratios compared

to cubic perovskites. The lower end of this range indicates increased anisotropy and

potentially more brittle behavior. The calculated values of ν are 0.29, 0.23, 0.25 and

0.29 for CaZrO3, CaZrO2Se, CaZrOSe2, and CaZrSe3 respectively. Therefore, all

the studied compounds possess ionic bonding while CaZrO2Se is covalently bonded

compounds.

Cauchy pressure (PC) is a concept derived from the stress-strain relationship in

materials. It’s useful in understanding the ductility or brittleness of materials based

on their elastic constants. It is calculated as the difference between the elastic

constants C12 and C44 for both cubic and tetragonal phase systems [80]:

PC = C12 − C44 (3.27)

The Cauchy pressure helps in predicting the mechanical behavior of materials. Its

positive value indicates ductile behavior, while negative values signifies the brittle

nature of the materials. Pugh ratio (k) also describes the ductile and brittleness

behavior of the material based on its elastic properties [96]. It is defined as the ratio
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of the bulk modulus (B) to the shear modulus (G):

k =
B

G
(3.28)

For a materials, high Pugh ratio (k > 1.75) suggests ductile behavior, while a

low ratio (k < 1.75) indicates brittle behavior [96]. Whether elastic anisotropy

factor, (A) is a very significant parameter in engineering and the manufacturing

area. Anisotropic factor measures the degree of anisotropy in a crystal’s elastic

properties. It is derived from the elastic constants of the material and help to

describe the variation of elastic response in different crystallographic directions. The

material is isotropic or anisotropic is determined by the expected value of anisotropy

factor, (A). When A > 1, that indicates greater anisotropy, with a stiffer response in

some crystallographic directions. A < 1 also implies anisotropy, but with a different

directional dependence of elastic stiffness and A = 1 represents a perfectly isotropic

elastic material. Both cubic and tetragonal system’s anisotropy factor (A) can be

calculated by the following formula [97,98]

A =
2C44

C11 − C12

(3.29)

where, C11, C12, and C44 are the elastic constants of cubic and tetragonal systems.

Both of these oxide perovskites are anisotropic based on the values calculated for

them, which are 1.22 for CaZrO3, 0.63 for CaZrO2Se, 0.48 for CaZrOSe2 and 0.22

for CaZrSe3. It helps to determine the microcracks within the material.

Furthermore, we have also computed the Kleinman parameter (η), which describes

the relative positions of the cation and anion sub-lattices under volume-conserving

strain distortions for which positions are not fixed by symmetry using the following

relation for cubic and tetragonal system [98]

η =
C44 − C12

C44 + C12

. (3.30)

where, C44 is the shear modulus and C12 is the elastic modulus relating to longitu-

dinal strain. It is known that a low value of η implies that there is a large resistance
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against bond bending or bond-angle distortion and vice versa. The Kleinman param-

eter for cubic perovskites generally ranges from -0.2 to 0.5 [99], indicating a tendency

toward isotropy and for tetragonal perovskites the ranges from -0.3 to 0.5 [100], re-

flecting their anisotropic nature. The computed values of η are tabulated in Table

3.4.

Debye temperature (θD) is a characteristic temperature that provides insights into

the vibrational properties of solid, including its heat capacity and thermal conduc-

tivity. It is related to the elastic constants and density of the material and can

be calculated using the material’s sound velocity. Debye temperature (θD) of the

compound can be understood by utilizing the Anderson model based on elastic con-

stants. The cubic and tetragonal perovskites having general equation for the Debye

temperature (θD) is [101]

θD =
h

KB

[
3n

4πV
]
1
3νm. (3.31)

Here, h represents Planck’s constant, V denotes the volume per atom, KB implies

Boltzmann’s constant, n is the number of atoms per formula unit and νm is the

average sound velocity in the material. The average sound velocity (νm) is related

to the transverse (νt) and longitudinal (νl) sound velocities that can be expressed

as [101]

νm = [
1

3
(
2

ν3t
+

1

ν3l
]−

1
3 (3.32)

To calculate the transverse (νt) and longitudinal (νl) sound velocities, we use the fol-

lowing relations based on the elastic constants and density (ρ) which are determined

using the bulk (B) and shear (G) modulus through Navier’s equation [101]

νt = [
G

ρ
]
1
2 , (3.33)

and

νl = [
3B + 4G

3ρ
]
1
2 . (3.34)

For cubic perovskites, the elastic moduli C11, C12, and C44 and density can be used

to estimate the Debye temperature. The Debye temperature for cubic perovskites

generally falls within the range of 300 K to 800 K [102], depending on the specific ma-
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terial’s elastic properties. For tetragonal perovskites, the anisotropy of the crystall

leads to more variation in sound velocities. Tetragonal systems exhibit differences

between their elastic constant along different crystallographic axes, which affects νt

and νl, and hence the Debye temperature. The Debye temperature for tetragonal

perovskites is often slightly lower than that of cubic perovskites and typically falls

in the range of 200 K to 600 K [103]. The computed Debye temperature, acoustic

velocity of the CaZrO3−xSex (x = 0, 1, 2, 3) compounds, are presented in Table 3.4.

Our findings suggest that substituting Se results in a decrease in the Debye temper-

ature. Typically, harder solids exhibit higher θD, and a low value of θD indicates low

lattice thermal conductivity and low minimum thermal conductivity [104]. CaZrO3

has the highest values θD, while CaZrSe3 has the lowest. The sequence of θD values

is as follows: CaZrO3 > CaZrO2Se > CaZrOSe2 > CaZrSe3. The average speed of

sound in these compounds also reflects this pattern.

Furthermore, the melting temperatures (TM) in the cubic and tetragonal phases can

be determined using the following equations,

TM = [533 + (5.91)C11], (3.35)

and

TM = 3C11 + 1.5C33 + 354, (3.36)

for cubic and tetragonal system, respectively. Here, C11 and C33 represent the elastic

constants [105–107]. When we compare these calculated TM values, we observe that

CaZrO3 has a higher melting temperature than CaZrO2Se, CaZrOSe2 and CaZrSe3

compounds. This suggests that CaZrO3 is better suited for high-temperature appli-

cations. This observation aligns with the behavior of Young’s modulus, as TM and

Young’s modulus exhibit a strong correlation. We computed the melting tempera-

tures of these compounds as follows: CaZrO3 (2121.71 K), CaZrO2Se (2114.90 K),

CaZrOSe2 (1520.92 K), and CaZrSe3 (1334.00 K).
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Chapter 4

Conclusions

We have investigated the structural, mechanical, electronic, and optical properties of

CaZrO3−xSex (x = 0, 1, 2, 3) perovskite semiconducting materials using generalized

gradient approximation. Selenium substitution for oxygen resulted in a remarkable

structural transformation, shifting from cubic to tetragonal phases in CaZrO2Se

and CaZrOSe2, subsequently returning to a cubic phase in CaZrSe3. The stability

of these phases were confirmed by tolerance factor and negative formation energy.

The semiconducting nature of the electronic density of states and band structure

studies have been emphasized by the noticeable band gap between the valence and

conduction bands around the Fermi level. Indirect band gap value of 3.44 eV,

1.9 eV, 0.71 eV and 0.23 eV have been observed in CaZrO3−xSex (x = 0, 1, 2, 3)

compounds, that are drastically reduced by Se substitution at the O sites. The

optical properties demonstrated significant absorption coefficients in the order of 104

cm−1, indicating strong light-absorbing capabilities, and they aligned closely with

the band structure analysis. These materials were well suited for optoelectronic

devices due to their absorption in the visible and ultraviolet region with extremely

low optical loss. Further indication of their potential came from their minimal

reflection and the refractive index of the studied compounds shows the optimal

range of polarization and transparency for photovoltaic applications like solar cells.
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Mainly, CaZrO2Se and CaZrOSe2 emerged as promising candidates for solar cell

technology, with expected light absorption in the near-infrared range to ultraviolet.

The Debye temperature and melting temperature were both significantly reduced

by the Se substitution in terms of elastic properties. According to an assessment

of the compound’s mechanical properties confirmed that CaZrO3, CaZrOSe2, and

CaZrSe3 exhibit ductile characteristics, while CaZrO2Se displays brittle behavior.
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List of Abbreviations

AMF : Around Mean-Field

BO : Born-Oppenheimer

BZ : Brillouin Zone

CB : Conduction Band

CBM : Conduction Band Minima

DFT : Density Functional Theory

DOS : Density of States

FLL : Fully Localized Limit

FP-LAPW : Full-Potential Linearized Augmented Plane Wave

GGA : Generalized Gradient Approximation

HEG : Homogenous Electron Gas

HF : Hartree Fock

HK : Hohenberg-Kohn

KS : Kohn-Sham

LDA : Local Density Approximation

LSDA : Local Spin Density Approximation

PBE : Perdew-Burke Ernzerhof

PDOS : Partial Density of States

RHF : Restricted Hartree Fock

ROHF : Restricted Open-Shell Hartree Fock
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SOC : Spin Orbit Coupling

UV : Ultraviolet

VB : Valence Band

VBM : Valence Band Maxima

XC : Exchange Correlation
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