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Abstract

In this work, we investigate the structural, electronic, optical and mechanical prop-
erties of spin polarized CaZrO3_,Se, (r = 0,1, 2, 3) perovskites using first-principles
calculations based on density functional theory as implemented in the WIEN2k code.
The crystal structure of the compounds CaZrOs_,Se, (x = 0,1,2,3) changes from
cubic phase of CaZrOj to tetragonal configuration for CaZrOsSe and CaZrOSe,,
eventually returning to a cubic phase in CaZrSes with varying = values. The
electronic structure reveals that CaZrOs_,Se, (z = 0,1,2,3) compounds exhibit
semiconducting behavior. However, as the parameter x increases from 0 to 3, the
band gap value decreases from 3.44 eV to 0.23 eV. The elastic constants and me-
chanical properties such as Young modulus, shear modulus, and Poission ratio of
CaZrOs_,Se, (z = 0,1,2,3) materials have been obtained to show its mechanical
stability and ductility where CaZrOsSe exhibits brittle characteristics. Addition-
ally, the structural stabilities of these materials are ensured by the Goldschmidt’s
tolerance factor and negative forrmaion energy. Furtheremore, optical properties
including the dielectric function, refractive index, absorption coefficient, optical con-
ductivity, reflectivity, energy loss function and extinction coefficient are investigated
in each case. In addition, good absorption coefficient, high optical conductivity and
small reflectivity in the visible and ultraviolet region indicate that the CaZrOs_,Se,
(x = 0,1,2,3) perovskites have the potential to be used in diverse optoelectronic

applications beyond photovoltaics.
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Chapter 1

Introduction

Perovskite materials have gained significant interest of researchers over the past
ten years due to their attractive material properties and potential applications in
many industry and technological domain including electrode functionalities [1], wa-
ter splitting [2], photovoltaic, spintronic, photocatalysis [3], and thermoelectric ap-
plications [4]. Recently, oxide perovskite compounds have received immense consid-
eration due to their significant physical properties for optoelectronic devices [5-8].
On the other hand, chalcogenide perovskites have also been studied in recent years
because they exhibit smaller band gaps than oxide perovskites and higher stability
than halide perovskites. The invention of perovskite based solar cells have demon-
strated remarkable advancements in converting solar power, with their efficiency
rising from 3.8% in 2009 to an impressive 25.5% by 2020 [9]. Their sustained perfor-
mance over time is impeded by susceptibility to environmental factors like moisture,

light, and temperature, which can adversely affect their long-term stability [10,11].

Within the fascinating perovskite oxides, AZrOs (A = Ca, Sr, Ba) are the most
widely examined and most suitable for optoelectronic and thermoelectric properties.
On the plane-wave ultrasoft pseudopotential technique based on the first-principles
density functional theory (DFT), J. Liu et al. [12] investigated the structural, elastic,

electronic and optical properties of the seven different phases of SrZrOs; and they



Introduction

obtained seven phases of SrZrOs are mechanically stable with cubic and tetrago-
nal structures. When S.S.A. Gillani et al. investigated how magnesium doping
influenced the band gap and optical characteristics of SrZrO3 perovskite, they dis-
covered that doping with magnesium changed the electronic band structure, making
this material a desirable option for optoelectronic compounds [13]. To understand
the electronic, optical and other characteristics of a perovskite material is essential
to comprehend its usefulness in various fields. However, conducting experimental
research requires a significant amount of resources and financial support. Density
functional theory based computational investigations can point the way for experi-
mental endeavours and, in many instances, provide a greater insight into the synthe-
sized, associated features, and application of materials. Electronic, optical, elastic
and many other property can be determined based on density functional theory
accurately [14-18], and several observation shows its validity by comparing with

experimental data.

In 2019 N.A. Noor et al. studied the pressure dependent optoelectronic and ground
state thermoelectric properties of MgZrO3 [19]. D.M. Hoatet al. investigated the
configurational, electronic and photon related features of cubic perovskite CaZrOs
and CaHfO3 in 2018 [20]. The mechanical behavior of CaZrOj is also studied by Z.F.
Hou in 2008 [21]. Among several cubic perovskites, CaZrOgz has huge melting point,
extremely low thermal extension, very high toughness, elevated chemical constancy
and outstanding decay resistance in opposite to earth alkali oxides [22]. When M.
Rashid et al. studied the pressure dependent physical characteristics of alkaline
earth zirconates (AZrOs; A = Ca, Ba, and Sr), they observed the band gap tran-
sition from indirect to direct when pressure is applied. They also realized that this
agreement of the optical characteristics suggests practical optical applications [23].
The structural, electronic, and optical properties of pure CaZrOgs perovskite have
been tuned by the magnesium doping concentrations by fiest-principles computation
based on DF'T investigated theoretically by I. Zeba et al. and observed the electronic
band gap decreases from 3.27 eV to 2.18 eV with increasing doping concentration.
Analysis of optical properties with Mg doping reveals that the absorption edge of
CaZrO3 show the red shift and it would be very potential candidate for optoelec-
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tronic application [24]. Yu-Liang Liu et al. [25] focused on tuning the photocatalytic
performance of NaTaOj into the visible light range by doping S, Se, and Te elements.
The decrease in band energy gaps and a significant enhancement of absorption co-
efficient in the visible light range is observed for the doped structure. The effects of
sulfur, selenium, and tellurium on the electronic and optical properties of LiNbOg3
were studied by using density functional theory within WIEN2k code based on the
generalized gradient approximation investigated by I. Ait Brahim et al. [26]. Chen-
hua Deng et al. [27] also observed transition metal-doped chalcogenide perovskite
magnetic semiconductor for photovoltaic applications. The effects of three axial
dilation strains and chalcogens-doped with dilation strain on electronic, optic, and
thermoelectric properties of BaSnO3 compound were examined by B. Akenoun et
al. [28]. They found that the bandgap decreases while the increase of chalcogens
elements in BaSnO3 up to 5.0% and observed the absorption coefficient shifts into
the visible region due to the reduction of bandgap which is quite recommended the

photovoltaic applications.

M.A. Ali et al. [29] investigated the effect of S-substitution on the material’s struc-
ture, electronic behavior, optical responses, mechanical strength, and thermody-
namic characteristics of KTaO3 and found that the band structure is affected by
S doping and optical characteristics of S-doped KTaO3 is a potentials maerial for
opoelecronic application. Importantly, all these compounds have exhibited mechan-
ical stability [29]. Moreover, the effect of dopants on the structural, electronic and
optical properties of pristine AgGaO3 and doped Ag; ,Cr,GaO3 (x = 0.25, 0.50 and
0.75 at%) have been explored using first principle simulation by R.M. Arif Khalil
et al. [30]. The physical properties of perovskites CaZrO;_,S, (z = 0,1,2,3) was
investigated by H.Labrim et al.using DFT and observed the band gap changes from
3.36 eV to 0.48 eV with the change of x values. Along with they deduced that mate-
rials have good absorption coefficient which makes them suitable for optoelectronic

applications [31].

Optroelectronic materials possess the remarkable ablity to initiate chemical reaction

by hardnessing energy from absorbed light, which can be enhanced by replacing or
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doping oxygen with chalcogenide atoms like sulfur (S) or selenium (Se) [32]. B.
Mouhib et al. explored the electronic and optical properties on sulfur (S) and se-
lenium (Se), or tellurium (Te) doping in AZrOs-type perovskite compound through
computational methods. These studies have observed a consistent trend: as the
dopant concentration increases, the material’s band gap decreases [33]. The elec-
tronic, optical and transport properties of perovskite BaZrS;_,Se, compound doped
with different concentrations of Se (x = 0%, 10%, 15% and 20%) are investigated by
H. Zitouni et al. They found that the band gap values decreases by increasing the
doping concentrations from 1.59 eV (for 0% of Se) to 1.35 eV (for 20% of Se). In
addition to, BaZrS; perovskite have good optoelectronic properties for photovoltaic

applications [34].

Therefore, we are motivated by the above work to investigate the optoelectronic and
mechanical properties of CaZrOs_,Se, (xz = 0, 1,2,3) perovskites to provide infor-
mation on its potential applications in photovoltaic and optoelectronic devices. In
this work, we start with the introduction of perovskite materials in the first chapter.
In chapter 2 we discuss the basic quantum mechanics which starts with Schrédinger’s
equation as well as the theoretical investigation of density functional theory includ-
ing the electron density, Thomas-Fermi theory, Hohenberg-Kohn theory, Kohn-Sham
equations, solving the Khon-Sham equation, and the exchange-correlation potential
such as local density approximation, generalized-gradient approximation. In Chap-
ter 3, we present the outcomes with discussions of this thesis work. In this chapter,
initially we focus on determining the crystal structure. Subsequently, we computed
various properties, including electronic band structure, density of states, optical
properties, as well as elastic properties of CaZrO;_,Se, (z = 0,1,2,3). Finally,
in chapter 4, we present our findings and show some possible applications of the

studied compounds.



Chapter 2

Density Functional Theory

Computational approaches are becoming an integral part of the scientific world, par-
ticularly when calculating challenges. Computational and numerical methods are
crucial for issues involving numerous amounts of particles, data, and so on that can-
not be solved analytically. Furthermore, it requires a large amount of resources or
financial support for the experiment. DFT is a type of ab initio method that is often
referred to as a computational quantum mechanical modeling method. The method
is well-known at the matter of quantum chemistry, condensed matter physics, mate-
rials science. The application of this method starts with remedying the many-body
Schrédinger equation problem. However, DF'T is more than just another method to
solve the Schrodinger equation. DFT provides an entirely distinct approach to any
interacting problem, translating it perfectly to more simple non-interacting problem.
This methodology is broadly utilized for resolving a variety of issues, with the elec-
tronic structure problem being the most common [35]. In DFT, the electron density
is used as the fundamental factor, instead of the wave-function. Another method
for solving the many-body Schrodinger equation is the Hartree-Fock approach, that
uses wave-functions to describe the electronic figure of atoms and substance. How-
ever, this methods has several drawbacks, including a high cost of calculation time

for investigating big systems. But DFT has demonstrated superior accuracy at a re-
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duced computing cost, making it superior to all other approaches. This facts makes
DFT the most useful method to analyze electronic structure. Walter Kohn with his
co-workers developed this “Density functional theory” and find out the way of using
the electron density to resolve the Schrodinger equation. He got novel prize for his
timeworn work [36]. The chapter provides an overview of fundamental quantum

physics, its difficulties, and how DFT resolves them.

2.1 Schrodinger Equation

The Schrodinger equation is a fundamental equation in quantum mechanics that
describes how the quantum state of a physical system changes. It is crucial for
understanding the behaviour of particles at the atomic and sub-atomic levels such
as electrons, photons and other quantum objects. It is a mathematical equation that
was thought of by Erwin Schrédinger in 1925 [37]. The mathematical representation
of Schrodinger equation is

HU = EU, (2.1)

where, H is the Hamiltonian operator, W is the wave function of the system, and F is
the energy eigenvalue representing the total energy of the quantum state. This equa-
tion is crucial in finding the stationary states of quantum systems. The Hamiltonian
H represents the total energy operator of the system and is typically composed of
two parts:

H=T+V, (2.2)

where, T = —%V2 is the kinetic energy operator and V= V(r) is the potential
energy operator. Putting this into the equation (2.1), the Schrodinger equation in
three dimensions becomes
h2
{ -—V2+ V(r)} U(r) = B¥(r). (2.3)

2m

In one dimension, it simplifies to

[_ 2 dU(x)

ST —|—V(x)\lf(ac)] = EV¥(x). (2.4)

6
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where, U is a quantity associated with a moving particle. It is a complex quantity.
The wave function ¥ has no physical meaning. The wave function ¥ describes the
position of a particle with respect to time. It can be considered as probability am-
plitude. | ¥ |2 is proportional to the probability of finding a particle at a particular
time that is called probability density.

| [P=] o | (2.5)

The wave function ¥ must be finite everywhere. If U is finite for a particular point,
it means an infinite large probability of finding the particles at that point. This
would violates the uncertainity principles. It must be single valued. If ¥ has more
than one value at any point, it means more than one value of probability of finding
the particle at that point which is ridiculous. The wave function must be continuous

and have a continuous first derivative everywhere and its must be normalizable.

For the sake of simplicity, the discussion is restricted to the time-independent wave
function. A question always arising with physical quantities is about possible inter-
pretations as well as observations. The Born probability interpretation of the wave
function, which is a major principle of the Copenhagen interpretation of quantum
mechanics, provides a physical interpretation for the square of the wave function as

a probability density [36, 38]
P = |’l7Z)(I'1,I'2, ..... rN)|2dr1dr2 ..... dI‘N (26)

Equation (2.6) describes the probability that particles 1,2,...,.N are located simul-
taneously in the corresponding volume element dridrs...dry [39]. What happens if
the positions of two particles are exchanged, must be considered as well. Following
merely logical reasoning, the overall probability density cannot depend on such an

exchange,
|U(ry, T, ..., Ty, 5, ooy T[> = [U(ry, 1o, ., T, T, o, )] (2.7)

There are only two possibilities for the behavior of the wave function during a
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particle exchange. The first one is a symmetrical wave function, which does not
change due to such an exchange. This corresponds to bosons (particles with integer
or zero spin). The other possibility is an anti-symmetrical wave function, where
an exchange of two particles causes a sign change, which corresponds to fermions

(particles which half-integer spin) [40,41].

In this text only electrons are from interest, which are fermions. The anti symmetric
fermion wave function leads to the Pauli principle, which states that no two electrons
can occupy the same state, whereas state means the orbital and spin parts of the
wave function [42]. If equation (2.6) describes the probability of finding a particle
in a volume element, setting the full range of coordinates as volume element must
result in a probability of one, i.e. all particles must be found somewhere in space.

This corresponds to the normalization condition for the wave function.

/drl/drg.../drN|@/J(r1,r2,...rN)|2 =1 (2.8)

Equation (2.8) also gives insight on the requirements a wave function must fulfill in
order to be physical acceptable. Wave functions must be continuous over the full
spatial range and square-integratable [43]. The eigenfunctions W, with correspond-
ing energy eigenvalues are Ej. The set ¥, is complete and ¥, may always be taken

to be orthonormal and normalized
/‘I’Z‘I’ldIN = (Ve|V;) = O (2.9)

We denote the ground state wave function and energy by ¥y and Ey. Here, [dxy
means integration over 3N spatial coordinates and summation over N spin coordi-

nates. Expectation values of observables are given by formula,

(A) = % (2.10)

where, A is the Hermitian linear operator for the observable A. If ¥ is normalized,
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expectation values of kinetic and potential energy are given by the formulas

T[W] = (T) = / VT Wdg (2.11)

VU] = (V) = / UV Wda (2.12)

When a system is in the state W, which may or may not satisfy equation (2.1), the

average of many measurements of the energy is given by the formula

(V] 1|v)

P =)

(2.13)

where,

(U|H|W) = / U HUda (2.14)
Since furthermore, each particular measurement of the energy gives one of the eigen-
values of H, we immediately have

E[V] > E, (2.15)

The energy computed from a guessed W is an upper bound to the true ground state
energy FEy. Full minimization of the functional E[¥] with respect to all allowed N-
electron wave functions will give the true ground state ¥y and energy E[V,] = Ey,
that is,

Ey = m\gn E[V] (2.16)

Formal proof of minimum energy principle goes on follows. Expanding ¥ in terms

of normalized eigenstates of H
=Y Cly (2.17)
k

Then the energy becomes,

>k |CkIPEx
E[U] = &xlTk 2k
=500

where E}, is the energy k' eigenstate of H. Noting that, the orthogonality of the Wy

(2.18)
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has been used. Because Fy < Ey < ... < Ey. E(V¥) is always greater than or equal
to Ey and it reaches its minimum if and only if ¥ = Cy¥,. Every eigenstate W is
an extremum of the function E[¥]. In other words one may replace the Schrédinger

equation with the variational principle

SE[U] =0 (2.19)

2.2 Born-Oppenheimer (BO) Approximation

The Born-Oppenheimer approximation is a fundamental concept in quantum me-
chanics, particularly in the context of molecular and condensed matter physics. It
addresses the challenge of the many-body problem by making a crucial simplifying
assumption. In condensed matter physics, the many-body problem arises because
materials are composed of a large number of interacting particles (such as electrons
and nuclei). The interactions between these particles are typically complex and can
be described by quantum mechanical principles. The Hamiltonian of a many-body

system consisting of nuclei and electrons can be written as [44],
~ h2 Z[ZJ@
H=-Y — Vg —
Y AR
Z[@
_'_
Z |rz—ra| Z [R; =i

(2.20)
where, the indexes I, J run on nuclei, ¢ and j on electrons, R; and M; are position
and mass of the nuclei, r; and m, are position and mass of the electrons. |R; — Ry,
|IR; —r;| and |r; — r;| represent the distance between the nucleus-nucleus, nucleus-
electron, and electron-electron. In the right hand side, first term — ), 2h2 V

represents the kinetic energy of the nuclei. Second term —) . %VZ denotes the

kinetic energy of electrons. Third term 3 L I |ZI Zs EJ is for the potential energy

of nuclei-nuclei interaction. Fourth term 1 52 ¢ | is for the potential energy of

4,J |ri—r;
ZIe

R, represents the

electron-electron coulomb interaction and the last term » iy

potential energy of nuclei-electron coulomb interaction.

10



Density Functional Theory

In condensed matter physics, Born-Oppenheimer (BO) approximation is the well
known mathematical approximation. Specifically, it is the assumption that the
wave function of atomic nuclei and electrons in a molecule can be treated separately,
based on the fact that the nuclei are much heavier than electrons [45]. Due to larger
relative mass of a nucleus compared to an electron, the coordinates of the electrons
are dynamic. The approach is named after Max Born and J. Robert Oppenheimer
in 1927. This approximation is widely used in quantum mechanics to speed up the
computation of molecular wavefunctions and other properties for large molecules.
There are cases where the assumption of separable motion no longer holds, which
make the approximation lose validity, but even then the approximation is usually
used as a starting point for more refined methods. Applying Born-Oppenheimer

approximation, the electronic Hamiltonian is grouped into three terms

~ Zje
Hopee = — —v2 2.21
: ; Z\rl—rﬂ Z|R1—rZ (221)
and the Schrodinger equation for a many-body system reduces to

N 7€’
HaeeW = — Z o Z o rj|\If Z oV (2.22)
As soon as the potential is known, the next step is the determination of the wave
function, which contains all information about the system. As simple as that sounds,
the exact knowledge of the potential is not possible for most natural systems, i.e.
in similarity to classical mechanics, the largest system which can be solved analyt-
ically is a two-body system, which corresponding to a hydrogen atom. Using all
approximations introduced up to now it is possible to calculate a problem similar
to HJ , a single ionized hydrogen molecule. To get results for larger systems, further

approximations have to be made.

2.3 The Hartree-Fock (HF) Approximation

If we can solve the electronic Schrodinger equation, we can describe the motion of

the nuclei by introducing a nuclear Hamiltonian under the same assumptions used

11
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to derive the electronic Schrodinger equation. So the major problem in condensed
matter physics is to solve the electronic Schrodinger equation, which is the goal of
the Hartree-Fock (HF') method. The Hartree-Fock approach is the first standard ap-
proach to many body system which was applied in 1930 by Fock [46]. The problems
which are not possible to solve analitycallay of many body problems, this approach
gives a suitable strategy to approximate it. It is as similar as the Least Action
Principle of classical mechanics. For now, we have the interest only on the elec-
tronic Schrodinger equation. Therefore, we get H = f[elec, E = Eelec- The energy
as observable corresponds to the general Hamiltonian operator can be calculated

as [47,48],

E = (H) :/drl/er.../drN\I!*(rl,rQ,...,rN)]:I\II(rl,rQ,...,rN) (2.23)

If we take a wave function as a trial, the obtained energy is not the same as the actual
ground state wave function. Actual ground state energy is always lower than the
obtained energy. If trial wave function is equal as the ground state wave function,

the energies in both cases are equal.

Etm'al Z EO (224)

with
Eirial = /drl/er.../drN\IJ;;,ial(rl,rg,...,rN)ﬁ\I/mGl(rl,r2,...,rN) (2.25)

and

Ey :/dr1/drg.../drN\Ifg(rl,rz,...,rN)ﬁ\IJO(rl,rQ,...,rN) (2.26)

The expressions above are usually inconvenient to handle. For the sake of a compact
notation, the following the Dirac’s bra-ket notation can be applied to the above

equation as [49],

<\I]t7"ial|f{|\ljtrial> - Etrial Z EO - <\I]O|[:I|\IIO> (227)

12
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Proof: The eigenfunctions v; of the Hamiltonian H (each corresponding to an
energy eigenvalue E;) form a complete basis set, therefore any normalized trial wave

function Wy, can be linear combination of those eigenfunctions [50].
Wirial = Z it (2.28)

The assumption is made that the eigenfunctions are orthogonal and normalized.

Therefore, it follows that

<\Ijtmal|H|\Ijtmal = Z /\HM Z )\jq/Jj - Z Z )\* wz|¢] Z |)‘j|2
J
(2.29)
On the other hand, following equation (2.29)

Etrial = <\Iltr7jal|]:]|\llt7’ial> = <Z )\ZQ/)Z|[:I| Z Ajwj> = Z Ej|>‘j|2 (230)
i J J

Together with the fact that the ground state energy Ej is defined by the lowest
possible energy, and therefore has the smallest eigenvalue (Ey < FE;), it is found

that

Eirial = ZEj|>\j‘2 > EOZ A2 (2.31)
J J

One of the key ideas of density functional theory is the mathematical framework
mentioned above, which consists of rules that assign numerical values to functions.
In constrant to functional, which takes a function as an input and produces numerical
outputs, whereas a function receives a numerical input and produces a numerical
output [51]. Expressed in terms of functional calculus, where ¥ — N addresses all
allowed N electron wave functions [52], this means

Ey = min E[¥] = min (¥|H|¥) = mln(\IJ|T +V 4+ U|D). (2.32)
v—N U—N v—N

Due to the abundance of potential wave functions and, on the other hand, the
constrained processing capacity and time, the solution for the N electron systems is

almost unachievable. As in the restricted Hartree-Fock approximation, it is possible
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to limit the search to a more manageable subset of wavefunctions. The search
is restricted to the antisymmetric product of N one electron wave functions that
approximates N wave functions. A wave function of this type is called Slater-

determinant [53].

xi(z1)  xe(w1) oo xw(21)

Wy s = (V) [V elm) () (2.33)

xi(zn) xa(on) - xn(zw)

It is important to note that the spin-orbitals y;(z;) are depend on spatial coordinates
as well as spin coordinates. Spin coordinates are introduced by the spin function,
x; = 14, 5. The text by Szabo [42] and Holthausen [52] omits a through description
of the spin orbitals and their properties. Returning to the variational principle
and equation, the ground state energy approximated by a single slater determinan

becomes

Ey= min_Elpsp] = min_(sp|H|¢sp) = (dsp|T +V +Ulpsp) (2.34)

mi min
¢sp—N ¢sp—N ¢sp—N
A general expression for the Hartree-Fock Energy is obtained by uses of the slater
determinant as a trial function. According to equation (2.29), the normalization

integral (¥ yp|Vyr) is equal to 1 and the energy expectation value is found to be

given by the formula

Enr = (9ol Hl6s) = iH +, i(‘]” - Ky (2:35)
where
1= [ 6@l-5 9+ U@ @)ds (2.36)
D= [ [ odaneito) - vite)s(dnds, (2.37)
Kig = [ [ st iaa) s aa)donde, (2.38)

These integrals are all real and J;; > K;; > 0. J;; are called Coulomb integrals and
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K;; are exchange integrals [42,52]. We have the important equation

This is the reason the double summation in the equation that include ¢ = j terms.

Minimization of equation subject to the orthonormalization conditions,

V7 (2)Y;(z)dx = b (2.40)

gives the Hartree-Fock differential equation

N
FUi() =) ey(x) (2.41)
j=1
Where,
A 1
F= —§V2—i—v+g (2.42)

in which the Coulomb exchange operator g(x1) is given by

g=7—k (2.43)
Here,
al 1
Hanfe) =3 [ viteinte); - flan)ds (2.44)
al 1
Ko f() = Y [ vilan)intas) - vnle)ds (249

with f(x;) an arbitrary function. The matrix e consists of lagrange multipliers.
Also,
Eﬂfi = &ij (246)

J

where, ¢ is Hermitian. Now multiplying equation (2.35) with W# and integrating,

one obtains the formula for orbital energies

N
e =i = (Uil Flbi) = Hi+ > _(Jiy — Kij) (2.47)
j=1
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Summing over ¢ and compearing with equation (2.38) we get,

N
Epr = Z € — ‘Zze (2-48)
i=1

Where the symbol V.. stands for electron electron repulsion energy.

N

Vo= [ D ymla oS S (= Ky (2.49)

i<j Y i,j=1

For the total molecular energy including nucleus-nucleus repulsion one has,
N
WHF - Z & — ‘/ee + Vnn (250)
i=j

Neither Fyr nor Wy is equal to the sum of orbital energies. Hartree-Fock method

is a non-linear self-consistent field.

2.4 Limitation and Failings of the Hartree-Fock
(HF) Approximation

Atoms as well as molecules can have an even or odd number of electrons. If the
number of electrons is even and all of them are located in double occupied spatial
orbitals, the compound is in a singlet state. Such systems are called closed-shell
systems. Compounds with an odd number of electrons as well as compounds with
single occupied orbitals, i.e. species with triplet or higher ground state, are called
open-shell systems respectively. These two types of systems correspond to two differ-
ent approaches of the Hartree-Fock method. In the restricted HF-method (RHF),
all electrons are considered to be paired in orbitals whereas in the unrestricted
HF (UHF)-method this limitation is lifted totally. It is also possible to describe
open-shell systems with a RHF approach where only the single occupied orbitals
are excluded which is then called a restricted open-shell HF (ROHF) which is an
approach closer to reality but also more complex and therefore less popular than

UHF [52).
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There are also closed-shell systems which require the unrestricted approach in order
to get proper results. For instance, the description of the dissociation of Hy (i.e.
the behavior at large internuclear distance), where one electron must be located at
one hydrogen atom, can logically not be obtained by the use of a system which
places both electrons in the same spatial orbital. Therefore the choice of method is
always a very important point in HF calculations. Kohn states several M = p® with
3 < p < 10 parameters for an output with adequate accuracy in the investigations of
the Hy system [54]. For a system with N = 100 electrons, the number of parameters
rises to,

M = pPN = 330 5 1030 ~ 10%50 — 107 (2.51)

According to the equation (2.51), energy reduction would have to be done in a space
with at least 10*° dimension, which is well above current computer capabilities. As
a result, HF methods are limited to situations involving a modest number of electron
(N ~ 10). This barrier commonly referred to as the exponential wall because of
the exponential component in equation (2.49). Since a many electron wave function
cannot be described entirely by a single Slater determinant, the energy obtained
by HF' calculations is always larger than the exact ground state energy. The most
accurate energy obtainable by HF-methods is called the Hartree-Fock-limit. The
Hartree-Fock-limit is the most precise energy that can be calculated using HF-
methods. Since a many electron wave function cannot be described entirely by a
single Slater determinant, the energy obtained by HF calculations is always larger
than the exact ground state energy. The most accurate energy obtainable by HF-

methods is called the Hartree-Fock-limit.

2.5 Correlation Energy

No single determinant or straightforward combination of a few determinants can
ever accurately describe the wave function for a system with many interacting elec-
trons. The calculation of the energy error, however, is here characterized as being

negative. The difference between Fypr and E.... is called correlation energy and
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can be denoted as [55],
EHE — B i — Enrp. (2.52)

corr

When atomic and molecular changes preserve the number and type of chemical
bonds, correlation energy tends to remain constant, but it can fluctuate significantly
and become decisive when bonds change. Its magnitude can range from a few
hundredth of an atomic unit to hundreds of kilocalories per mole. Exchange energies
are an order magnitude or bigger, even if the self exchange term is omitted. Despite
the fact that E,,,., is usually small against E,,;,, as in the example of a Ny molecule

where

EHF — 14.9¢V < 0.001E,,,. (2.53)

corr

It can have a huge influence. For instance, the experimental dissociation energy of
the Ny molecule is

Eiss = 9.9¢V < Eeopr (2.54)

which corresponds to a large contribution of the correlation energy to relative ener-
gies such as reaction energies which are of particular interest in quantum chemistry.
The main contribution to the correlation energy arises from the mean field approx-

imation used in the HF-method [52].

2.6 The Electron Density

In previous sections, we observed the challenges involved in solving the Schrédinger
equation for larger structures. Scientists needed to come up with an approximation
or model for wave function that will give logical outcome. When establishing such a
model, it’s worth to remember that wave function is not observable directly. Instead,
we can measure is the probability that IV electrons at some particular set of position
(ry,....,ry). Also, we need to remember that all electrons are identical. So we can
not level them as electron 1 or electron N, but we could figure out the probability
of any order or set of N electrons being in the coordinates r; to ry. Keeping this
factors in mind, the electron density which is the fundamental parameter for DFT

can be calculated like [56,57]:
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n(r) :N/drg.../z/}*(rl,rQ,...,rN)z/J(rl,rg,...,rN)drN (2.55)

The total number of electrons can be obtained by integration the electron density

over the spatial variables [52]

N = /n(r)dr (2.56)

2.7 Thomas-Fermi Model

Many people have looked into the subject of explaining the density of a assembly
with multiple electrons, which led to the so-called density functional theory. The
first exploration has done by Llewellyn Thomas and Enrico Fermi in 1927, which
is known as Thomas-Fermi model [58]. The model helps to describe the electronic
structure of many election system. It was made in a semi-classical way soon after the
Schrodinger equation was made. It’s a semi-classical approach since it borrows some
ideas from quantum mechanics. But the rest of the ideas don’t use quantum physics.
Instead, they can be operated with regular function. Unlike the wave function based
approach, this formulation was completely based on electronic density and is seen as
a precursor to the modern DFT. The total energy of a system, within the Thomas-
Fermi model, is given as a functional of density like Erp[n(r)]. The Thomas-Fermi

energy functional composed of three terms, is expressed as follow:

Err =X / n(r)idr + / n(r)‘/ext(r)dr+% / / %drdr' (2.57)

The initial phase is the electronic kinetic energy of a system of electrons in a uniform
electron gas that do not interact with each other. We can obtain this by integrating

the kinetic energy density of a homogeneous electron gas to to[n(r)] as:

Trp = /to[n(r)]dr (2.58)

to[n(r)] is obtained by summing all the free-electron energy states € = % up to the
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Fermi wave vector Pp = [372n(r)]3 given by:

to[n(r)] = 2%2 /0 ;;MNPdP (2.59)

The term Np leads to the density of allowed states in reciprocal space given by

4r P2V2

75— This gives us the result for X as:

3 2
X = 10(37‘(‘ )3 (260)

The second term represents the classical electrostatic energy of attraction between
nuclei and electron. Here V,,(r) is the classic coulomb potential arising from the

nuclei, given by the following expression:
(iCC ’L 2‘ 6 1
! Z Ir — Ry ( )

And finally the third term in the energy functional represent the electron-electron
interaction of the system. It is approximated by the classical coulomb repulsion be-
tween electrons. This is also known as Hartree energy. To obtain the ground state
density of a system, the Thomas-Fermi equation must be minimized subjected to
the constraint that the number of electron is conserved. This type of constraint min-
imization problem can be solved by using Lagrange multiplayer. Say, the minimiza-
tion of a functional A[X], subjected to the constraint B[X], leads to the stationary
condition:

S(A[X] — aB[X]) = 0 (2.62)

Here is a constant which is known as Lagrange multiplayer. This minimization

leads to the solution of corresponding Euler equation:

JA[X] dB[X]
I (2.63)

Applying this above formula to the Thomas-Fermi model, it will give us the station-
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ary condition:

S Erwln(r)] - af / n(r)dr) — N)| = 0 (2.64)
This yields the so-called Thomas-Fermi equation as:

gxn(r)i 4 Vi (1) + /

‘:(_r 2 | dr’ (2.65)
This above equation can be solved using iterative methods to obtain the ground
state density. Thomas-Fermi model differs from other models because it is simple,
easy to understand, and works for large of temperatures as well as pressures. With
this model, we can use density to figure out the estimated term for kinetic energy.
In orbital-free DF'T, this formula for kinetic energy within Thomas-Fermi theory
is also used as a part of better density approximations for kinetic energy. Though
Thomas-Fermi theory contains all the necessary ingredients which paved the way to

modern DFT, it has many shortcoming as well. And those shortcomings are:

o It tell how atoms will stick together. So, this idea be made up of molecules and
solids.

e The estimation of kinetic energy is done in a rudimentary manner. Kinetic energy
accounts for a substantial portion of the overall energy. So even small mistakes can
add up to big problems.

e Oversimplified descriptions of how electrons interact with each other, which don’t
take into account many quantum effects.

e The correlation effect is neglected completely.

2.8 The Hohenberg-Kohn (HK) Theorems

When the Thomas-Fermi approach was first conceptualized, it was thought that the
energy could be declared solely by means of its electronic density. It took more than
three decades to offer a convincing argument for the validity of this idea, despite the
fact that it seemed reasonable at the time. In 1964, Hohenberg and Kohn introduced
theorems that established a strong logical basis for the preceding concepts, which

they also proved. The idea of DFT is built upon two essential theorems provided by
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Walter Kohn and Pierre Hohenberg. This theorems are known as Hohenberg-Kohn
theorems [52,59]. The theorems with their validity are given below:

2.8.1 The HK Theorem I

The Hohenberg-Kohn first theorem is:

The ground state of energy Ej from Schrodinger equation in a presence of external

potential V' (r) is a unique functional of electron density ny(r).

According to the first theorem, the ground-state density and the external potential
correspond one to one. Since the external potential is fixed, the Hamiltonian hence
the wave function ¥ is fixed by ng(r). The evidence in support of this theorem
is straightforward. Consider the ground states of two N-electron systems that are

characterised by two external potentials V.. (r) and V,,(r). These potentials differ

ext

from each other by more than just an additive constant. The corresponding Hamil-
tonians A and H’, which have the same ground state density n(r) but would have
different ground state wave functions, ¥ and ¥', with HVU = EyU and v = E(/)\If/.
Since U is not the ground state of H, it follows that

Ey < (V'|H|¥)
< (V'|H'|V') + (V'|H - H'|V) (2.66)

<%+/mmMMﬂ4@mw

Similarly,
Ey < (V| H|P)

< (U|H) + (WA — H]D) (2.67)
<%+/mum@®—nmmm

Adding equation (2.66) and equation (2.67)) lead to the contradiction

Hence, no two different external potential V. (r) can give rise to the same ground
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state density ng(r) which determines the external potential V,,;(r), except for a con-
stant. That is to say, there is a one to one mapping between the ground state density

no(r) and the external potential V. (r), although the exact formula is unknown.

2.8.2 The HK Theorem II

The second Hohenberg-Kohn theorem is:

There exists a universal functional F[n(r)] of the density independent of the ex-
ternal potential V., (r), that the minimum value of energy functional E[n(r)] =
[ n(r)Vezn(r)dr + Fn(r)] is the exact ground state energy of the systen and the
exact ground state density ng(r) minimizes this functional. Thus the exact ground

state energy and density are fully determined by the functional E[n(r)] [60].

The universal functional F[n(r)] can be written as
Fn(r)] = T[n(r)] + Eip[n(r)] (2.69)

where T'[n(r)] is the kinetic energy and Ej,;[n(r)] is the interaction energy of the
particles. According to variational principle [61], for any wavefunction W', the energy
functional E[¥']:

B[] = (VT + Vgt + Ve | ') (2.70)

has its global minimum value only when U’ is the ground state wavefunction W,
with the constraint that the total number of the particle is conserved. According
to HK theorem I, U' must correspond to a ground state with particle density n'(r)

and external potential V/,(r), then E[U'] is a functional of n'(r). According to

ext
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variational principle:
E[V] = (W|T + Vipy + Vg | V')
= E[n/(r)]
_ / W (0)V!.,(t)dr + Fln'(r)]
> B[,
_ / (1) Vear (1)dx + Flno(r)]

= Elno(r)]

(2.71)

/

Thus the energy functional E[U'] = [n(r)Veu(r)dr + F[n(r)] evaluated for the
correct ground state density ng(r) is indeed lower than the value of this functional
for any other density n(r). Therefore by minimizing the total energy functional of
the system with respect to variations in the density n(r), one would find the exact
ground state density and energy. This functional only determines ground state

properties, it doesn’t provide any guidance concerning excited states.

2.8.3 Advantage and Disadvantage of HK Theorems

With the help of these theorems, it is possible to calculate all the ground and excited
states of many-body wave-functions. Because n(r) has a single effect on external
potential, it also has a single effect on the ground state wave function, which could
be found from computing the full Schrodinger equation for many bodies. It also
implies, density of the ground particles entirely and exclusively influences all system
attributes. The Hamiltonian resembles the electronic Hamilton operator described
in the formula (2.22), which was the subject of Hohenberg and Kohn'’s initial in-
vestigation because it involved an electron gas. The advantage of Hohenberg-Kohn
theorems is that it make the process of resolving the Schrodinger equation simpler
by shifting the focus from finding a function of 3N variables (the wave function) to
a function of three variables (the electron density). The Hohenberg-Kohn theorem
utilizes the variational principle to establish the connections between potential and

density.
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Unfortunately, Hohenberg and Kohn’s framework is precise, yet it is not very useful
in practical calculations. Hohenberg and Kohn together could not offer any way to
find the proper electronic density [62]. As there is no explicit formula linking the
kinetic energy to the electronic density at this point, determining it accurately is
the main challenge. The Laplacian of the one-body density matrix, which is not
directly related to the density itself, must be known in order to calculate the ki-
netic energy term precisely. Because of this, it is challenging to calculate the kinetic
energy precisely. The Hohenberg-Kohn theorems are limited in their applicability
to ground-state systems exclusively. This means that it cannot be used to describe
excited states or dynamics of a system. Another limitation is that the theorem as-
sumes a non-degenerate ground state, which may not always be the case for certain

systems.

2.9 Kohn-Sham (KS) Equation

Kohn and Sham proposed a method to solve the problems that arises in the Hohenberg-

Kohn theorem [63] based on two approximations described as follows [64]:

1. The ground state density can be understood as the ground state of a system

consisting of non-interacting particles in an auxiliary framework.

2. The Hamiltonian of the auxiliary system is formulated using the conventional
kinetic energy operator, while the auxiliary potential is regarded as an effective

local potential.

The Kohn-Sham theorem postulates that the electron density of the ground state
in an interacting system is equivalent to the electron density of the ground-state
in a non-interacting system, provided that an effective potential V,s; is employed.
We disregard all forms of interaction between atoms, electrons, and nuclei in a
system that doesn’t interact. This approximation best works for densities which
are smooth and vary slowly [63]. Kohn and Sham considered a many-body, multi
electronic system composed of non-interacting particles. They solve the system using

a modified form of Schrodinger equation for a non-interacting system that produces
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the same value of ground state electron density as an interacting system. The non
interacting wave function of a many body wave function is a Slater determinant
of one electron wave function. One can obtain the wave function by solving this

Schrodinger equation (also refers as Kohn-Sham equation):

2

Hygsth; = [ f V2] = et (2.72)

2me

Here, the term Vs refers to effective potential, which compensates error due to
ignoring interaction. The total energy E(E = ) .¢;) is divided into two parts.
The known component which comes from the non-interacting part. As well as the
unknown component which is also known as exchange-correlation part (E.[n(r)]).
It contains all the errors that are contain in a non-interacting system as we neglect
all types of interaction between particles. The kinetic energy term is divided into
two parts: the kinetic energy of non-interacting particles (7,) and the kinetic energy
of interacting particles (73). The non-interacting part can be obtain by the equation:
72

Liln()] = —5= > (0i[V|v:) (273)

2

The kinetic energy of interacting particles (73) can be obtained by approximation

methods like LDA, GGA. Also, the effective potential can be obtained from:

‘/eff = ‘/ezt + VHartree [n(r)] + ‘/:L‘c[n(r)] (274>

Here, Viariree|n(r)] is Hartree potential, which is obtained by:

e? n(r)
VHartree[n(r)] = 471'80 / ’I‘ — r,ldr (275)

And, the exchange-correlation potential V,.[n(r)] is defined as:

Vaeln(r)] = (2.76)
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From those considerations, the Hamiltonian becomes:

N R? e? n(r') . 8E.[n]
Hpg = — 2 1V, _dr + —=— 2.77
s 2me;v”+ lth47r60/\r—r| e on (2.77)

The major distinction within the formulation and the Hartree formulation is the
fact that the Kohn-Sham formulation involves exchange along with correlation in

the effective potential.

2.9.1 Solving Khon-Shan Equation

In a condensed matter system the KS equation gives a way to obtain the exact
density and energy of the ground state. The process starts with an initial electron
density n(r), usually a superposition of atomic electron density, then the effective
KS potential V,sy is calculated and the KS equation is solved with single-particle
eigenvalues and wave functions, a new electron density is then calculated from the

wave functions. This is usually done numerically through some self consistent iter-

Initial guess
n(r)

Calculate effective potential
Veﬁ‘ () =Vt () +Vigggriree [n] + Vi [7]
I
Solve KS equation

hz
[_MVZ + P’e]}'(r)}y'(l(r) = EI'WJ(r)

Calculate electron density

N
n(r) =Y % (r)%(r)

i=1

Self-consistent ?
Yes

Output quantities

Potential Energy, Static structure,
Born effective charges, etc...

Figure 2.1: Flowchart of self-consistency loop for solving Kohn-Sham equation.
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ation as shown in above flowchart. Self-consistent condition can be the change of
total energy or electron density from the previous iteration or total force acting on
atoms is less than some chosen small quantity, or a combination of these individual
conditions. If the self-consistency is not achieved, the calculated electron density
will be mixed with electron density from previous iterations to get a new electron
density. A new iteration will start with the new electron density. This process
continues until self-consistency is reached. After the self-consistency is reached, var-
ious quantities can be calculated including total energy, forces, stress, eigenvalues,

electron density of states, band structure etc.

2.10 Exchange-Correlation (XC) Potential

In DFT, the exchange-correlation potential is a word for how the electrons in a
material interact with each other. It combines the effects of exchange and corre-
lation, which are two basic ideas in quantum physics that explain how electrons
interact with each other. The exchange potential comes from the fact that electrons
are identical objects and follow the Pauli exclusion principle, which says that it is
impossible for two fermions that are identical to inhibit the same quantum state si-
multaneously. The correlation potential comes from the fact that electrons connect
with each other through Coulombic forces, which depend on where and how fast
they are moving. In DFT, to solve the equation (2.77), we also need an expression
for the exchange-correlation potential. For the solution, different theoretical mod-
els and estimates are used to get close to the exchange-correlation potential. The
accuracy of these rough estimates varies on the type of material being modeled and
how it is used. In the next parts, we will talk about and analyze the local density
and generalized gradient approximations, which are two of the most common ways

to solve the exchange-correlation functional.

2.10.1 Local Density Approximation (LDA)

The Khon Sham equation while exactly incorporating the kinetic energy T,[n(r)],

still leave the exchange correlational functional E,.[n(r)] unsetteled. In Khon Sham
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equation let us introduce the local density approximation proposed by Khon and
Sham [65]. The kinetic energy Tj[n(r)] is regorously treated in the Kohn Sham
schame, we can use the uniform electron gas formula solely for the unknown part of
the rest of the energy functional. Thus we introduce the local density approximation

(LDA) for exchange and correlation energy.

ELPA] = /n(r)em(n)dr (2.78)

Where, €,.[n(r)] indicates the exchange and correlation energy per particle of a
uniform electron gas of density n. The corresponding exchange correlation potential

then becomes,

E;PEIn] Ereln]
LDA _ “zc — xc 2.
vac (I‘) (S?’L(I‘) eﬂCC(n(r)) + TL(I') 5n(r> ( 79)
and the Khon-Sham equations read,
1 N
[—§V2 +V(r)+ |:(_r i dr + VEPA(R)W = ¢, (2.80)

This self consistent solution defines the KS local density approximation, which is
the literature is usually simply called local density approximation (LDA) method.

The function €,.(n) can be devided into exchange and correation contributions,
€zc(n) = €x(n) + €.(n) (2.81)
The exchange part is already known given by the Dirac exchange energy functional.
€a(n) = —Cyni(r) (2.82)

where,

(2)3 (2.83)
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2.10.2 Generalized Gradient Approximation (GGA)

The LDA neglects the inhomogeneties of the real charge density which could be
very different from the homogenous electron gas (HEG). The exchange correlation
(xc) energy of inhomogeneous charge density can be significantly different from
the HEG result. This leads to be the development of verious generalized-gradient
approximations (GGA) [66] which include density gradient corrections and higher
spatial derivatives of the electron density and give better result than LDA in many
cases. Three most widely used GGA’s are the from proposed by Becke, Perdew et
al., Burke and Enzerhof. The definition of the xc energy functional of GGA is the

generalized form in the equation of LSDA to include corrections [67],

Eg P ny(x), ny(r)] = / n(r)epe™[ny (r), ng(r)]dr (2.84)

home
e

Where, xc energy density €;2¢[n(r)] is a function of the density alone and is

home

2omeln(r)] and correlation energy density

composed into exchange energy density €
erme[n(r)]. So that the xc energy functional is decomposed into exchange energy

function ELPA[n(r)] linearly. From density gradient V(r) as,

B ny(r),nq(r)] = /n(r)EZ‘c’me[m(r)am(r), V1@V 1), .. ]de

= /n(r)EZomen(r)Fxc[m(r)vm(r), V1@ [VI(r),..Jdr
(2.85)

home
zc

Where, F,. is dimensionless and €'"“n(r) is the exchange energy density of the
unpolarized HEG. F,. can be decomposed linearly into exchange contribution F,.
= F, + F.. Generally, GGA works better than LDA, in pridicting binding energy
of molecules and bond length, crystal lattice constants, especially the system where
charge density varried rapidly. In case of ionic crystall, GGA overcorrects LDA
results where the lattice constants of LDA fit well than GGA. But in case of transi-
tion metal oxides and rare-earth element, both LDA and GGA perform badly. This

drawback leads to approximations beyond LDA and GGA.
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2.10.3 Local Spin Density Approximation (LSDA)

In the majority of the exchange-correlation functionals, the homogenous electron
gas is used. Particularly, in local density approximation, the density, n is considered
at each point in space and the homogenous electron gas model is applied locally
using the density only [68]. In the local spin density approximation (LSDA), the
electron density for individual spin components, n,(r) and ng(r) are used. Using
the homogeneous electron gas model, the exchange energy functional is known as
Dirac exchange and has a very simple mathematical form

prvs_ 32y Jna) 4 nate) i (236)

2 4

The general form of the local spin density approximation for the correlation energy

functional has the following form
ELSPAn, ngl = /n[rac(na(r),nﬁ»(r)]dr (2.87)

where, £.[n,(r), ng(r)] is the correlation energy per electron in a homogeneous elec-
tron gas. The exact form is unknown but many approximations to £.[n,(r), ng(r)]
exist. LSDA gives fairly good results for equilibrium geometries and vibrational
frequencies for covalently bonded molecules but has a tendancy to overbind atoms
because the molecule is overstabilized compared to the separate atoms. Moreover,
the results are bad for molecules containing hydrogen bonds and van der Waals

complexes.

In LSDA, the exchange energy is typically underestimated by 10% and the correla-
tion energy overestimated by 100%. The total energy is too high, the gap between
occupied and unoccupied orbitals (or bands in solid state physic) is too low. More-
over, LSDA favor the d"*s! configuration over the d"s? in the 3d transition metal
atoms. Gunnarsson and Jones showed that the major source of error in LSDA comes
from the exchange energy. A source of error in the calculation of the exchange energy
is the self-interaction repulsion present in LSDA. This error is related to the fact that

an electron sees all other electrons including itself. The presence of such an error is
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easy to verify, since the exchange energy of any one-electron system should be zero.
Perdew and Zunger have proposeda self-interaction corrected LSDA functional that
reduced the error below 3% for the exchange energy. Improvement was also obtained
in the LSDA correlation energy, in the total energy, in the orbital eigenvalues, in
the long range behavior of V,.(r), in the shape of the exchange-correlation hole and

consequently in the electronic density.

2.10.4 LDA-+U Method

Strongly correlated system usually contain transition metal or rare-earth metal ions
with partially filled d or f shells. Because of the orbital-independent potentials in
LSDA and GGA, they cannot properly describe such systems. The total energy in
LSDA+U method [69] is given by,

Eit "V [ne(r),ne] = E**PA[ng(r)] + EY[no] — Egeln(r)] (2.88)

where, o = spin indexes, n(r) = electron density for spin-o electrons, no = density
matrix of f or d electron for spin-o electrons, EL5P4[n, (r)] = standard LSDA energy
functional, and EY[n(r)] = electron-electron coulomb interaction energy. The last
term is double counting term which remove the average LDA energy contribution

of d or f electrons from the LDA energy
1 1
Edc[n(r)] = EUN(N — 1) — EJ[NT(NT — 1) + Ni(Ni — 1)] (289)

where, N = Ny + N;. U and J are coulomb and exchange parameters. If exchange

and non sphericity is neglected then,

1 1
EEDAYU _ o §U2ninj —SUN(N-1) (2.90)
i#1

The orbital energies ¢; are derivative of above equation with respect to orbital oc-

cupations n;:
oF
Gni

1
= ELDA+U(§ —ni) (291)

€ =
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For n; = 1, LDA orbital energiesare shifted by —% and by % and by for unoccupied
orbitals( n; = 0), resulting the upper and lower Hubbard bands, which opens a gap
at the Fermi energy in transition metal oxides. In case of double counting term,
it has two different treatment: around mean-field (AMF) and fully localized limit
(FLL). The former is most suitable for small U system and the letter for large U

system. The energies for double counting is given by,

1 U+2lJ1
EAMF _ Zpn2 2 A2 2
pn 2U ST—1 3 a fu (2.92)
and,
1 1
AMF __
BT = SUN(N =1) = 2J d Ny (Noyoy) (2.93)

2.10.5 Hybrid Functional

Hybrid functional approximation is a sort of computational method employed in
DFT studies. It was created by A. Becke [70]. Hybrid functionals try to get around
this problem by mixing parts of both the local density approximation (LDA), and
the generalized gradient approximation (GGA). In this method, the first exchange-

correlation energy was written in the format:
By =B + (1 =) Bt (2.94)

Here, E59 is the exchange energy calculated with the exact Kohn-Sham wave func-
tions. And 7 is known as fitting parameter. Currently, there are numerous popular
hybrid functionals available, including B3LYP, PBEO, and HSE06. Each of these
functionals has its own unique strengths and weaknesses, which depend on the spe-
cific material and property being studied. The main benefit of hybrid functionals
is that they blend the best parts of both LDA and GGA functionals. LDA does a
good job of describing how the density changes slowly, but it doesn’t account for
the exchange-correlation energy in systems where the density changes. GGA, on
the other hand, gives a better picture of the exchange correlation energy, but it

often overestimates or underestimates certain properties, such as band-gaps, bond
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lengths, and reaction energies. Hybrid functionals get around these problems by
adding a small amount of exact Hartree-Fock exchange to the normal GGA func-
tional. This makes the predicted properties more accurate, especially for systems
with big band-gaps, states that are localized, and atoms of transition metals. The
result is a hybrid functional that is a mix of LDA and GGA parts. This gives a

good balance between accuracy and cost of processing.
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Outcomes and Interpretation

Computational Details

First-principle calculations of CaZrOs_,Se, (z = 0,1, 2, 3) were performed using the
full-potential linearized augmented plane wave (FP-LAPW) approach [71,72] as im-
plemented in the WIEN2k code [73], which works within density functional theory
(DFT) [74]. The exchange and correlation potential [75] is used within the general-
ized gradient approximations (GGA) scheme of Perdew-Burke-Ernzerhof (PBE) to
solve Khon-Sham equation. In the full potential scheme the unit cell of the crystal is
separated into two different regions: atomic spheres and interstitial site [76]. Within
the atomic sphere the wave function is extended in atomic-like functions (radial part
times spherical harmonics) while in the interstitial region the wave function is pre-
sented in a plane wave basis. The energy convergence function used Ry;7Kpor = 8,
where, K4, is the size of the largest k£ vector in the plane wave expansion and Ry;r
is the radius of the smallest atom in the unit cell. The energy separation between
core and valence states has been set to -6.0 Ry. Inside the sphere the angular mo-
mentum vector, [,,,,, = 10, while the maximum values of the Gaussian factor, G,, ..
=16 (a.u.)"!. The limit for energy convergence and charge convergence for the iter-

ation process was set to 107° Ry and 1073 e respectively. From the energy-volume
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calculations, we found the optimal ground state parameters using the Murnaghan
equation of state. The number of states that are accessible for each interval of energy
per unit volume was calculated by analyzing the density of states. We have used
10x10x10 k-mesh for the Brillouin zone integration for structural and electronic
properties calculations, and 20x20x20 k-mesh used for optical properties calcula-
tions. To calculate elastic constants, we used Charpin’s approach as implemented in
WIEN2k [77]. Finally, mechanical poperties of the CaZrOs_,Se, (x =0, 1,2, 3) were
calculated using second-order derivative within WIEN2k package to evaluate elastic
tensor of a cubic and tetragonal phase structure. As the structure is cubic, there
are only three independent constants Cy;, Cis, and Cyy. For tetragonal structure,
there are six elastic constants C1, Co, Ci3, C33, Cyy, and Cgg. These independent
elastic constants are used to determine the mechanical stability of CaZrOs_,Se,

(x =0,1,2,3) perovskites.

3.1 Structural Properties

CaZrOj is categorized under the spatial symmetry of the Pm3m (221) crystallo-
graphic space group and has a cubic perovskite crystal structure, as illustrated in
Figure 3.1(a). The arrangement of atoms is as follows: Ca locates at the center of
the unit cell at coordinates (0,0, 0), Zr occupies at the corner position (0.5, 0.5,0.5),
and O resides at the center of the face (0.5,0.5,0). We used atomic locations and
the generalized gradient approximation (GGA) to achieve optimal lattice param-
eters and unit cell volume across all CaZrOsz_,Se, (x = 0,1,2,3) crystal phases.
Regarding cubic CaZrQOs, replacing 1 or 2 selenium atoms results in the formation
of CaZrOySe in Figure 3.1(b) and CaZrOSe; in Figure 3.1(c) respectively. Atomic
locations in CaZrO,Se are as follows: Ca (0,0,0), Zr (0.5,0.5,0.5), O (0.5,0,0.5)
and Se (0.5,0.5,0). For CaZrOSe,, the positions of the atoms can be described as
follows: Ca (0,0,0), Zr (0.5,0.5,0.5), O (0.5,0.5,0) and Se (0.5,0,0.5).
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Figure 3.1: The crystal structure of compounds: a) CaZrOg, b) CaZrOsSe, ¢) CaZrOSes
and d) CaZrSes.

Importantly, this substitution instigates a change in the crystal structure from cubic
to tetragonal symmetry, and the resulting phases confirm the space group P4/mmm
(123). Furthermore, CaZrSes is created in the CaZrOj; molecule when 3 selenide
atoms are introduced as replacements shown in Figure 3.1(d). This newly formed
compound has the same space group and atomic coordinates as Ca, and it still
has a cubic structure similar to that. The physical characteristics and electronic
band structure of the system are significantly influenced by this phase transforma-
tion. Using two cubic frameworks, CaZrOs and CaZrSes, we optimized volume and
found the corresponding minimal energy volumes, which are elegantly dipicted in
Figure 3.1(a), (d). The stability of these structures was evaluated, and the intricate
relationship between total energy and volume was investigated, using the state equa-
tion obtained from the Birch-Murnaghan model [78]. We embarked on a two-step

optimization process for the tetragonal structures, CaZrO,Se and CaZrOSe,.
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Table 3.1: The optimized structure information and band gap (Eg) value of CaZrOs_,Se,
systems.

Compounds Space group a (A) b (A) c(A) V (A% Eg (eV)
CaZrOg3 Pm3m 4.14  4.14 414  252.67 3.34
CaZrO,Se P4/mmm 4.13  4.13 552  334.93 1.94
CaZrOSey  P4/mmm 535 535 4.01 410.38 0.71
CaZrSes Pm3m 5.23 523 5.23 509.18 0.23

In the initial phase, we controlled the volume while keeping the ¢/a ratio constant.
Further refinement was achieved by maintaining the equilibrium volume while mod-
ifying the c/a ratio, an adjustment made through a parabolic fitting approach.
Subsequently, employing the equation of state according to Birch-Murnaghan, we
matched the resultant volume variation, elegantly displayed in Figure 3.2(b), (c).

The Brich-Murnaghan’s equation of state can be represented as follows:

ByV / Vo Vo

m@o(l - V) + (V)Bé’_l] (3.1)

Etot(V) - EO +

In this equation, Ej is the energy of the ground state, By is the bulk modulus and

By is its derivatives, V) and V are the ground state unit cell volume.

The comprehensive findings from this geometric optimization, encompassing lattice
parameters and other structural intricacies for both tetragonal and cubic phases, are
documented in Table 3.1. It can be seen from Table 3.1 that the lattice parameter
and unit cell volume are increased when x value increasing from 0 to 3. Furthermore,
the crystal formability of CaZrOs_,Se, (z =0, 1,2,3) perovskites can be evaluated
by the tolerance factor (7). The general formula of tolerance factor (7) for cubic

perovskites has been computed using the relation [31,79]

(Ca*" + 0*)
TCaZrO3 = \/Q(ZT’4+ T 027) (32)
and,
(Ca®t + Se*7) (3.3)

TCaZrSes — \/2(ZT4+ + S€2_)
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Figure 3.2: The optimization of the total energy versus unit cell volume of the studied
compounds a) CaZrOgz, b) CaZrOsSe, ¢) CaZrOSes and d) CaZrSes perovskites.

For tetragonal perovskites [80], we have used the equation

Ca2t + 202~ 4 Se?~

3
\/2(Z7”4+ + 202*;5‘@2*) <3'4)

TCaZrOsSe =

and,
2— 2—
Ca2+ _|_ @) +3QS€

V2AZrit 4 G

TCaZrOSes = (3.5)

Where, Ca?t, Zr*t, O?>~, and Se? refer to the ionic radii of Ca, Zr, O, and
Se element respectively. These equations have been used to check the satbility of
the studied compounds in their pure state. From Table 3.2 their tolerance factor
shows that effectively such materials are found to be stable in their perovskites
structure. We assessed the chemical durability of the semiconductor CaZrOs_,Se,

(x =0,1,2,3) perovskite by determining its formation energy. The formula is given

below
CaZrOsz_,Se, a r e
AECaZrO3—zSBZ _ Etotal ’ — (AEtCotal + BEg)tal + CES)tal + DEtOotal) (3 6)
orm A+B+C+D '
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Table 3.2: Computed tolerance factor (7) and formation energy (AFE) values for each
compound: CaZrQOs, CaZrOsSe, CaZrOSes, and CaZrSes.

Compounds Ions Ionic radius (A) 7 (A) AE (eV)

CaZrOs Ca’*t 1.14 0.82 -4.34
CaZrOySe  Zr*t 0.80 0.79 -3.44
CaZrOSe, 0%~ 1.36 0.79 -2.62

CaZrSes Se?~ 1.98 0.80 -1.60

In the preceding equation, A represents the number of C'a atoms, B is the count
of Zr atoms, and C and D correspond to the quantities of Se and O atoms within
the unit cell respectively. EtCO?aZlTOS“”S%, ECa  EZr  ESe . and EC,, denote the
overall energies of the CaZrO;_,Se, (x = 0,1,2,3) perovskites and the stable forms
of Ca, Zr, Se, and O in their solid structures, respectively. Here are the computed
formation energies mentioned for the compounds: CaZrOgs exhibits 4.34 eV per
atom, CaZrO,Se has 3.44 eV per atom, CaZrOSe, demonstrates 2.62 eV per atom,
and CaZrSes displays 1.60 eV per atom. These values provide insight into the

relative stability of these compounds, shedding light on their chemical behavior.

3.2 Electronic Properties

The electronic properties of CaZrO;_,Se, (x = 0,1,2,3) materials, such as band
structure and density of states, can be elucidated by DFT computations. There
are two types of electronic band gaps, direct and indirect. In direct band gap,
the conduction band minima (CBM) and valence band maxima (VBM) are at same
location, while in indirect band gap, CBM and VBM are at different locations. Com-
prehension of the electrical properties of the material requires an understanding of
the band gap, which is the energy difference between conduction band and valence
band. Understanding electronic band structure is also a fundamental requirement
for realizing optical features. The electronic band structure via spin-polarized cal-
culations on employing GGA method are provided in Figure 3.3. In the Brillouin
zone, points of high symmetry are R(0.5, 0.5, 0.5), T'(0, 0, 0), X(0, 0.5, 0) and M(0.5,
0.5, 0) displayed in bandstructures for CaZrO3_,Se, (z = 0,1, 2, 3) perovskites.
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Figure 3.3: The calculated electronic band structures of CaZrOs_,Se, systems a) spin-
up and b) spin-down for CaZrOg, c) spin-up and d) spin-down for CaZrOsSe, e) spin-up
and f) spin-down for CaZrOSes and g) spin-up and h) spin-down for CaZrSes along some
high symmetry directions of brillouin zone.
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It can be seen from this figure that the studied compounds are semiconductors with
indirect band gap (R-T"). It is also observed that the band gap decreases gradually
from 3.44 eV to 0.23 eV, when the ratio of Se doping increases from 0 to 3 as a result
of the overlapping states caused by the increasing size of chalcogens. The obtained
energy band gap values are 3.44 eV, 1.94 eV, 0.71 eV and 0.23 eV for CaZrOs,
CaZrO,Se, CaZrOSe, and CaZrSes, respectively. Again, when x = 3, selenium have
the significant contribution comes Se-p states in the valence band regions in Figure
3.4. We assumed that selenium’s influence is the main factor driving changes in the
band gaps of these compounds. The calculated energy gap values are represented
in Table 3.3. The suitable band gap value of 1.94 eV makes the CaZrO,Se material
a potential candidate for optoelectronic application in photovoltaic. On the other-
hand, the band gap energy 0.71 eV makes CaZrOSe, material a favorable candidate
for photovoltaic applications. Moreover, the bandgap values of CaZrO3 and CaZrSes

perovskites make them a potential candidate for other optoelectronic applications.

The investigation focused on analyzing the total and partial density of states (DOS)
in order to understand more about the orbital contributions that lead to atomic
bonding and the development of valence and conduction states. A strong hybridiza-
tion between these orbitals is indicated by the partial density of states (PDOS) plot
for CaZrOgs in Figure 3.4(a), which shows that the Ca-d, Zr-d, and O-p states are

important in creating the valence band in the deeper region. There is a noticeable
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Figure 3.4: Representation of total and partial density of states (DOS) of (a) CaZrOs,
(b) CaZrOsSe, (c¢) CaZrOSes, and (d) CaZrSes systems using the GGA-PBE method.
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decrease in the involvement of Ca-d states close to the Fermi level in the valence
band when (z = 1,2, 3) selenium atoms are substituted for CaZrOs. However, this
reduction is compensated by a rise in participation of Se-p states in the valence band.
As a consequence, the substitution of Se for O in CaZrOjz results in modifications
to the electronic structure of the material, which in turn affects the functions of the
atomic orbitals in the valence band. More precisely, the contribution of Ca-d states
to the valence band diminishes as Se-p states start to make a substantial contribu-
tion. From this figure we can noted that the studied compounds are semiconductors
along with there is no change between up spin and down spin that indicates perfect
symmetry. A significant hybridization takes place between O-p and Zr-d states in
the conduction band of CaZrOj3 at the Fermi level. At the Fermi level, Se-p states
start to contribute actively and hybridize with Zr-d levels when oxygen is replaced
with 1, 2, or 3 selenium atoms. Zirconium (Zr-d) is thought to have a key role in
structuring the valence and conduction bands. This is because pseudo-states are
produced. From Figure 3.3, we can note that the studied compounds are semicon-
ductors. Also, the perfect symmetry between majority and minority spins indicate

that the materials are non-magnetic.

3.3 Optical Properties

The optical characteristics of a material are greatly influenced by the behavior of
electrons, particularly their rates of transition and recombination. Electronic tran-
sitions in semiconductor materials can be divided into two classes: intra-band and
inter-band. For optical applications only inter-band transitions are responsible for
excitations and recombinations [81,82]. The optical nature of any material is ex-
plained by the imaginary dielectric function £(w) which describes the relationship
between a material’s response to incident photons and its energy given by Ehrenreich

and Cohen’s equation state as follows [83]:
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Here, w denotes the angular frequency of electromagnetic radiation on the material,
£1(w) and e9(w) indicate polarization and absorption respectively [83]. Dielectric
function’s imaginary part e3(w) is given as follows:

4m2e?

o) = as

Si [ M % F0)(1 = FO B = o= ). (39

Initial states are denoted by ¢ and final states by j in this instance. The charge, elec-
tron mass, frequency, and crystal wave vector are denoted by the parameters e, m, w,
and k, respectively. As E,, represents the free electron energy and M the momen-
tum operator, f(i) is the Fermi distribution function and the dielectric function’s

real part €1(w) can be determined by using the Kramers-Kronig equation [84]:

™

2 o dw
51(&}) =1+ —P/ wsg(w)m, (39)
0

where, P is the principal value of the integral. From ¢;(w) and &1 (w), the following
relationships are used to calculate all other optical parameters, such as refractive
index n(w), absorption coefficient a(w), optical conductivity o(w), reflectivity R(w),

and energy loss function L(w) [84,85].

) = —5(EHw) + @)l + o)} (3.10)
a(w) = @“([e?(w) +&5(W)]2 +e1(w))? (3.11)
o(w) = 1-2(w) (3.12)

o= Bkt
Lw) = ——=2) (3.14)

3.3.1 Real and Imaginary Dielectric Function

The real dielectric function elaborates the dispersion and polarization of light on

interaction with material of a slightly changing refractive index. The frequency of
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light depends upon phase velocity which reacts to maximum dispersion and polar-
ized light at plasma resonance of lattice waves. The values of real part, £;(w) dielec-
tric function have been depicted in Figure 3.5(a). The static dielectric function of
CaZrOgz, CaZrO,Se, CaZrOSe, and CaZrSez are 4.0, 6.0, 9.5 and 14.5 respectively.
The £1(0) increases gradually with the change of anion oxygen to selenium. The
static dielectric function is directly related to how easily the material’s dipoles or
charge distributions can be polarized in the presence of an electric field. It can be
seen from Figure 3.5(a) that the four compounds reach peak values in the energy
range of 1 —3 eV. When the ratio of Se doping increases from 0 to 3, the peak value
of £1(w) increase successively and go to lower energy region. The plot indicates an
increasing trend with photon energy and reaches a maximum value of 8.5 (at 5 eV),
9.5 (at 3.2eV), 12 (at 2.5 eV), and 14 (at 1.0 eV) for CaZrOj, CaZrOsSe, CaZrOSe,
and CaZrSes respectively. From the peaks of maximum intensity, it becomes clear
that the resonance frequency is fully polarized in a direction perpendicular to elec-
tric field of the incident light. Moreover, it shifts toward lower photon energy after
increasing doping ratio. Furthermore, over the resonance, the peaks started droping

to minimum value and after that entering the negative zone.
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Figure 3.5: Energy versus dielectric constant of CaZrO3s_,Se, (z = 0,1, 2, 3) perovskites.

The imaginary part of dielectric function e9(w) describes the material’s absorption
coefficient and ability of the material to interact with electromagnetic radiation.
It possesses a direct relationship with the electronic band gap. The transition of
electrons between energy levels at different states leads to the formation of imag-
inary part of dielectric function. The imaginary part of dielectric function e9(w)
for CaZrOs_,Se, (x = 0,1,2,3) are plotted in Figure 3.5(b). The first peak for
all compounds is caused by the transition from the valence band (primarily made
up of p-orbitals) to the conduction band (made up of p and d-orbitals), when the
photon’s energy rises. Such transitions also related to the second peak. Imaginary
part of dielectric function has large number of peak because of transition between
unoccupied and occupied states of valence and conduction band as shown in Figure
3.5. From 0-3.34 eV, 0—1.94 eV, 0—0.71 eV , 0—0.23 €V no transition take place for
CaZrOgz, CaZrOsySe, CaZrOSesy, and CaZrSes respectively because incident photon
has less energy than band gap between valence and conduction band. In this inter-
val, instead of taking electron from valence band to conduction band the electron
continuously radiate energy. The threshold energy for transition is around 3.34 eV,
1.94 eV, 0.71 ¢V and 0.23 eV. We can note that these values are closely related
to the electronic band gap. We can see that there is a strong correlation between

these values and the electrical band gap. Furthermore, it is evident that for CaZrOg,
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CaZrOySe, CaZrOSe,, and CaZrSes, the eo(w) reaches the greatest peaks at 5.67,
5.12, 4.10, and 2.12 eV. The values of e5(w) fall negative region as energy increases
due to reflection of incident light. Subsequently, the absorption start to take place
and its value rises as a result of the point contributing to e5(w) beginning to rise

rapidly.

3.3.2 Refractive Index and Absorption Coefficient

In order to further understand the optical properties of CaZrOs_,Se, (z =0,1,2,3)
materials, we calculated the refractive index, n(w) of the materials from real and
imaginary parts of the dielectric function. The refractive index, n(w) is used to de-
termine the amount of light bent or refracted as it enters into a substance. Further-
more, the phase velocity of an electromagnetic wave in a medium can be calculated
by n(w). The refractive index n(w) reflects the dispersion of light and transparency
of the materials are shown in Figure 3.6(a). According to the order in the diagram,
the refractive index zero energy n(0) of the CaZrOs_,Se, (z =0, 1,2,3) compounds
are 2.00, 2.40, 3.10, and 3.85 respectively. The values of static dielectric function
and static refractive index are related to each other by n?(0) = (0) where, £(0) and
n(0) are used to find applicability to interact with light and control its propagation
through the material. This is the conformation range of n(w) from 2 to 3 is ideal
for visible light solar cells. In addition to, the value of n(0) has shown an increasing
trend with photon energy and reaches a maximum of 3.0 at 5.4 eV for CaZrOg, 3.2
at 3.4 ev for CaZrO,Se, 3.56 at 2.4 eV for CaZrOSes, and 4.4 at 1.0 eV CaZrSes
respectively. After that, with further increase in photon energy, n(0) declines. This

implies that CaZrOs_,Se, (x = 0,1,2,3) should be preferable for optical devices.

The optical absorption coefficient a(w) denotes the amount of energy absorbed by
a substance per unit length similar to the imaginary dielectric function. This ab-
sorption behavior is influenced by various factors like the crystal’s band gap and
molecular structure. In particular, optical absorption happens when the frequency
of incoming photons matches the atomic transition frequency within the material.

Each semiconductor material has a light absorption threshold below which it
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Figure 3.6: The calculated optical parameter of CaZrOs_,Se, (x =0, 1,2, 3)
compounds, (a) refractive index n(w), and (b) absorption coefficient a(w).
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does not function. The interaction of photon with the valence electrons makes them
capable of light absorption over this threshold limit. The relationship a = 47k/\
represents the maximum rate of light degradation. Figure 3.6(b) illustrate the behav-
ior of absorption coefficient a(w) as a function of photon energy (eV). From Figure
3.6(b) and Figure 3.5(b), both absorption coefficient and imaginary part of dielectric
function are analogous to each other sinch each explains absorption of light. From
the figure 3.6(b), the threshold value of a(w) appears to be 3.44 eV, 1.94 eV, 0.71
eV, and 0.23 eV for CaZrOsz, CaZrOsSe, CaZrOSe,, and CaZrSes respectively. Be-
low threshold energy, no absorption occurs that shows transparent energy range for
the material, which correspond to the forbidden energy gaps. As the photon energy
increases, the a(w) increases and reaches maximum value of 160 (at 10.8 eV), 154 (at
11.5 eV), 145 (at 11.4 €V) and 135 (at 9.0 V) for CaZrOs, CaZrOsSe, CaZrOSes,
and CaZrSe; respectively. This sharp increase in a(w) corresponds to limit of in-
cident photons reaching absorption edge. The highest absorption for CaZrO;_,Se,
(x =0,1,2,3) perovskites is observed in the ultraviolet (UV) region. Higher energy
regions exhibit more variations because the electron’s energy is absorbed from the
incoming photons with different excitation rate. After that, when the absorption
coefficient starts decreasing with further increase in photon energy (eV), revealing

a semiconducting nature of computed materials.

3.3.3 Optical Conductivity and Reflectivity

The optical conductivit,y o(w) is an essential parameter that assists in identifying
a material’s electromagnetic response. In another explanation, the optical conduc-
tivity represents the amount of photons that travelled through the samples. When
a sample is subjected to a strong electric field, it reveals the electrical conductivity,
and for natural frequencies, it correlates the current density to the electric field.
The optical conductivity and electrical conductivity improve with increasing pho-
ton absorption. Similar characteristics exist in optical conductivity and absorption
spectra, as presented in Figure 3.7(a), owing to the escape of free carriers from the

valence band to the conduction band when it absorbs energy.
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As we can be seen in this Figure 3.7(a), the optical conductivity spectra start from
3.44,1.94, 0.71 and 0.23 eV and reaches a maximal peak at 5.70, 4.40, 4.50, and 2.00
eV for CaZrOs, CaZrOySe, CaZrOSes, and CaZrSes, respectively. Then, it decreases
with certain oscillations to attain low values close to 0, which demonstrate that no
electrons are found in this region. The o(w) also follow a comparable trend to
that of the dielectric constants because when light of suitable frequency falls on
materials surface, absorption, reflection, transmission and conduction take place
simultaneously. It is also noted that the peaks of o(w) are higher for CaZrOsSe and
CaZrOSey compared to CaZrOsz and CaZrSes

Reflectivity is another important optical property for the solar cell and other ap-
plications of the perovskite. The fractional amount of incident light or energy that
is reflected from the surface of the surface materials can be investigated through
reflectivity denoted as R(w) as shown in Figure 3.7(b). The figure shows that under
the band-gap energy, CaZrO;_,Se, (x = 0,1,2,3) perovskites has reflectivity of the
incident light. After passing through the band-gap energy, it suddenly gives a bigger
pick with increasing energy and move on. In the visible region, both compounds
exhibit small reflection values, which are considered to minimal influence on the effi-
ciency of a device. However, at higher energys beyond 9 eV, the reflectivity displays
larger values due to the presence of negative £;(w) in that range. The low reflec-
tivity values suggest that these materials can be effectively employed as absorbing

materials in solar cells and as coating materials to minimize reflections.

3.3.4 Energy Loss Function and Extinction Coefficient

Another important factor is to measure energy loss function denoted as L(w) which
represents inter-band, intra-band, and plasmonic interactions. The energy loss func-
tion, L(w) describes loss of energy of the first electron passing through a material. It
is associated with the collective oscillation frequency of the valance electron. More-
over, the optical loss is a measure of energy loss through scattering, dispersing, and
heating, as illustrated in Figure 3.8(a). In the electron energy loss function plots for

CaZrO3_,Se, (x =0,1,2,3) compounds, the presence of peaks indicates light
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generated characteristic energy of excitions. Typically, this energy loss phenomenon
initiates within the energy limit of approximately 0.23—3.5 eV for all studied com-
pounds. Peaks in energy loss function, L(w) provides an overview of plasma res-
onance and its corresponding frequencies, also known as plasma frequencies. Im-
portantly, the plots show no scattering events occurs at energies lower than the
materials bandgap. Interestingly, in the visible region, the value of optical loss is
almost negligible (1.77—3.10 eV) as compared to in the ultraviolet region (3.10—12
eV) for CaZrOs_,Se, (x = 0,1,2,3) perovskites respectively, confirming the stud-
ied materials suitability in visible domain of electromagnetic spectrum to realize

excellent optoelectronic applications.

The extinction coefficient, k(w) of a material provide insights into its capability to
absorb incoming photons and its speed, respectively [86]. The parameter can be

expressed as:

N

k(w)

(V€ (W) + ()] — er(w))2. (3.15)

_ b

V2
The extinction coefficient, k(w) shows the attenuation of light like imaginary part
of dielectric function [87]. In Figure 3.8(b), the graph demonstrates the extinction
coefficient, k(w) for CaZrO;_,Se,. For all the compounds, k(w) remains at 0 within

the energy band gap range. As the light energy is greater than the energy band gap,

the maximum values for all compounds occur between 1.5 eV and 7 eV.

3.4 Mechanical Properties

The measurement of elastic constants is essential to investigate a material’s elastic
properties since they define how a material response to external forces and shed light
on its mechanical properties. The mechanical toughness and stability of a material
are thus exposed by such constants. The Charpin approach was used to calcu-
late elastic constants for a cubic crystal with three independent constants C7q1, Cia
and Cyy, where C}; represents the stiffness of materials against their strains, C
indicates the materials shear stress, and Cy, signifies the resistance against shear

deformation. While the tetragonal phases perovskites have more additional inde-
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pendent elastic constants Cs3, Cge and Cig. These constants can be used to relate
the mechanical response to the ductility or fragility of a material when it deforms in
an elastic domain. In this work, the elastic constants for CaZrOs_,Se, perovskites
were examined using the GGA functional. The calculated elastic constants of the

studied compounds are represented in Table 3.3.

Table 3.3: Calculated elastic constant of CaZrOs_,Se, (x = 0,1,2,3) perovskites.

Parameters CaZrOs; CaZrO,Se CaZrOSe;, CaZrSes

Cn 264.54 263.39 136.23 131.72
Cha 118.19 107.28 50.13 23.31
Cis - 22.89 10.07 -
Css - 131.37 256.22 -
Cu 89.06 49.40 20.81 12.00
Ces - 92.61 30.66 -

For cubic symmetry systems CaZrOjz and CaZrSes, the examined elastic constants
are positive which meets with the Born stability criteria [88] C11 > 0, C1 > 0, Cyy >
0, C11 +2C45) > 0, C1; — C12 > 0, and B > 0 a mechanically stable state for both
of the chosen materials is predicted. Cy; > |Cial|, 207 < C33(Chy + Cha), Cyq > 0
and Cgg > 0 are the mechanical stability condition [89] for tetragonal CaZrO,Se and
CaZrOSey. The calculated elastic constant shows that the studied compounds are
mechanically stable. The elastic constants were then used to calculate the elastic
moduli i.e. bulk modulus (B), shear modulus (G), and Young’s modulus (Y) by the

Hill’s formula [90], which is the average of Voight and Reuss assumptions as follow

_ By + Bg

B :
2

(3.16)

where, By and By denote the Voight and Reuss bulk moduli respectively.
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The bulk modulus (B) is the measure of how resistant to compression the material
is therefore the larger the bulk modulus, the better the resistant to volume defor-
mation. The bulk modulus for cubic structure is a linear combination of C'i; and

(1, so we can write [91]
O +20,
==

B (3.17)

In case of tetragonal system, the bulk modulus were calculated by the following

equation [92]
Ci + Ch2) + Cs3 +4C 3
5 :

Jpl (3.18)

The bulk modulus of CaZrO3_,Se, (r = 0,1,2,3) compounds changes with the
change of x value. Among the studied compounds, CaZrO3 have higher B value of

166.98 GPa while CaZrSes recorded lowest value 59.45 GPa of B.

The shear modulus (G) was estimated by Hill using Voigt’s (Gy) and the Reuss’s

(GRr) approximations for the cubic phase structure [93]

1
GV = 3(011 — 012) + 3Cy4. (319)
5C4y X (011 — (2
Gp= . 3.20
BT 4Cu+3CH — Ch2) (3.20)
GZEQ;E. (3.21)

And the following equations of shear modulus (G) for tetragonal phase structures [93]

is
_ Ci + Cra + 2033 — 4C13 + 1204 + 12C46

.22
G x (322
Gr = g[(On + C12)Cs3 — 2C%]C14Cig (3.23)

33044066 + [(Cu + 012)033 — 20123](044 + 066)
G—QQ;E (3.24)

The ability of a material to withstand transverse deformations is measured by its
shear modulus, which is a function of its hardness. The high shear modulus demon-

strates that the material cannot be easily changed in shape. Table 3.4 makes this
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quite evident of all studied compounds, the CaZrSe;z compound have the least capac-
ity to resist shape change, with a shear modulus (G) value of 28.88 GPa. Materials
with high B and G values have high melting points, which suggests that CaZrOs
would have a higher melting point than CaZrO3z_,Se, (z =0,1,2,3) compounds.

The ratio of the linear stress to the strain is known as the Young’s modulus (V).
Larger values of Y indicate that the material is stiffer. Young’s modulus, (Y) is

calculated in terms of shear (G) and bulk modulus (B) as follows [93],

_ 9BG
3B+ G’

(3.25)

Table 3.4: Calculated bulk modulus B (GPa), shear modulus G (GPa), Young’s mod-
ulus Y (GPa), Poission ratio v, Cauchy pressure Po (GPa), Pugh ratio k, anisotropy A,
Kleinman parameter 1, and Debye temperature 0p (K) for CaZrOsz_;Se,; (z = 0,1,2,3)
perovskites.

Parameters CaZrOs; CaZrO,Se CaZrOSe; CaZrSes

B 166.98 107.15 74.36 59.45
G 82.70 71.96 45.02 28.88
Y 212.95 176.38 112.37 74.57
v 0.29 0.23 0.25 0.29
Pe 29.14 D7.88 29.95 11.13
k 2.03 1.43 1.93 2.57
A 1.22 0.63 0.48 0.22
i 0.58 0.55 0.45 0.33
Op 607.33 494.34 342.45 253.72

Another factor is the Poisson ratio (v) is a measure of the elastic behavior of a ma-
terial under load, representing how much a material contracts in the perpendicular
direction when stretched. v gives the information about the hardness and stiffness

of material. For cubic and tetragonal systems, Poisson’s ratio can be drived from
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the elastic moduli using the following equation [94]

3B -2G

v = SBELG) (3.26)

where, B is bulk modulus and G is shear modulus. In cubic systems, the symmetry
is relatively high, and the poission ratio is opten isotropic (the same in all direction).
For materials with a cubic crystal structure, the typical range of Poission ratio is
0.20 < v < 0.30 exhibits a mix of ionic and covalent character. The lower end of
the range suggests more ionic character, while the higher end may indicate some
covalent character [95]. Tetragonal systems are less symmetric than cubic systems,
and the elastic properties can vary more significantly in different directions. The
Poission ratio for tetragonal structures typically falls within the range 0.25 < v <
0.35 [95]. In this range the presence of covalent bonding is typically stronger due to
the distortion in the structure, resulting in slightly higher Poission ratios compared
to cubic perovskites. The lower end of this range indicates increased anisotropy and
potentially more brittle behavior. The calculated values of v are 0.29, 0.23, 0.25 and
0.29 for CaZrOgs, CaZrOsSe, CaZrOSey, and CaZrSes respectively. Therefore, all
the studied compounds possess ionic bonding while CaZrO,Se is covalently bonded

compounds.

Cauchy pressure (Pg) is a concept derived from the stress-strain relationship in
materials. It’s useful in understanding the ductility or brittleness of materials based
on their elastic constants. It is calculated as the difference between the elastic

constants Co and Cyy for both cubic and tetragonal phase systems [80]:
Po=Crp— Cu (3.27)

The Cauchy pressure helps in predicting the mechanical behavior of materials. Its
positive value indicates ductile behavior, while negative values signifies the brittle
nature of the materials. Pugh ratio (k) also describes the ductile and brittleness

behavior of the material based on its elastic properties [96]. It is defined as the ratio
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of the bulk modulus (B) to the shear modulus (G):
B
k=— 3.28
= (3.28)

For a materials, high Pugh ratio (k > 1.75) suggests ductile behavior, while a
low ratio (k < 1.75) indicates brittle behavior [96]. Whether elastic anisotropy
factor, (A) is a very significant parameter in engineering and the manufacturing
area. Anisotropic factor measures the degree of anisotropy in a crystal’s elastic
properties. It is derived from the elastic constants of the material and help to
describe the variation of elastic response in different crystallographic directions. The
material is isotropic or anisotropic is determined by the expected value of anisotropy
factor, (A). When A > 1, that indicates greater anisotropy, with a stiffer response in
some crystallographic directions. A < 1 also implies anisotropy, but with a different
directional dependence of elastic stiffness and A = 1 represents a perfectly isotropic
elastic material. Both cubic and tetragonal system’s anisotropy factor (A) can be

calculated by the following formula [97, 98]

204

A= 2744
C’11_6’12

(3.29)

where, C'y, C'2, and C}y, are the elastic constants of cubic and tetragonal systems.
Both of these oxide perovskites are anisotropic based on the values calculated for
them, which are 1.22 for CaZrOgs, 0.63 for CaZrOsSe, 0.48 for CaZrOSe,; and 0.22

for CaZrSes. It helps to determine the microcracks within the material.

Furthermore, we have also computed the Kleinman parameter (), which describes
the relative positions of the cation and anion sub-lattices under volume-conserving
strain distortions for which positions are not fixed by symmetry using the following

relation for cubic and tetragonal system [98]

Oy —Cyy

= — 3.30
1 Cu + Cho ( )

where, (4 is the shear modulus and (5 is the elastic modulus relating to longitu-

dinal strain. It is known that a low value of n implies that there is a large resistance
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against bond bending or bond-angle distortion and vice versa. The Kleinman param-
eter for cubic perovskites generally ranges from -0.2 to 0.5 [99], indicating a tendency
toward isotropy and for tetragonal perovskites the ranges from -0.3 to 0.5 [100], re-
flecting their anisotropic nature. The computed values of n are tabulated in Table

3.4.

Debye temperature (6p) is a characteristic temperature that provides insights into
the vibrational properties of solid, including its heat capacity and thermal conduc-
tivity. It is related to the elastic constants and density of the material and can
be calculated using the material’s sound velocity. Debye temperature (fp) of the
compound can be understood by utilizing the Anderson model based on elastic con-
stants. The cubic and tetragonal perovskites having general equation for the Debye

temperature (fp) is [101]
h . 3n

D= Ky

ol

U (3.31)

Here, h represents Planck’s constant, V' denotes the volume per atom, Kp implies
Boltzmann’s constant, n is the number of atoms per formula unit and v, is the
average sound velocity in the material. The average sound velocity (v,,) is related
to the transverse (14) and longitudinal (v;) sound velocities that can be expressed
as [101]

V= [5( 5+ 5] (3.32)

To calculate the transverse (1) and longitudinal (1) sound velocities, we use the fol-
lowing relations based on the elastic constants and density (p) which are determined

using the bulk (B) and shear (G) modulus through Navier’s equation [101]

G.1
g [p] (3.33)
and
3B +4G 1
=[— "3, .34
=[] (3.34)

For cubic perovskites, the elastic moduli C;, C}2, and Cyy and density can be used
to estimate the Debye temperature. The Debye temperature for cubic perovskites

generally falls within the range of 300 K to 800 K [102], depending on the specific ma-
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terial’s elastic properties. For tetragonal perovskites, the anisotropy of the crystall
leads to more variation in sound velocities. Tetragonal systems exhibit differences
between their elastic constant along different crystallographic axes, which affects v
and v, and hence the Debye temperature. The Debye temperature for tetragonal
perovskites is often slightly lower than that of cubic perovskites and typically falls
in the range of 200 K to 600 K [103]. The computed Debye temperature, acoustic
velocity of the CaZrO3z_,Se, (z = 0,1,2,3) compounds, are presented in Table 3.4.
Our findings suggest that substituting Se results in a decrease in the Debye temper-
ature. Typically, harder solids exhibit higher 6, and a low value of 6 indicates low
lattice thermal conductivity and low minimum thermal conductivity [104]. CaZrOs
has the highest values 8p, while CaZrSe; has the lowest. The sequence of 6 values
is as follows: CaZrOs; > CaZrO,Se > CaZrOSe, > CaZrSes. The average speed of

sound in these compounds also reflects this pattern.

Furthermore, the melting temperatures (7)) in the cubic and tetragonal phases can

be determined using the following equations,

Tar = [533 + (5.91)Chl, (3.35)

and

Ty = 3C1 + 1.5C33 + 354, (3.36)

for cubic and tetragonal system, respectively. Here, C'; and C'33 represent the elastic
constants [105-107]. When we compare these calculated Ty, values, we observe that
CaZrOs3 has a higher melting temperature than CaZrO,Se, CaZrOSe, and CaZrSes
compounds. This suggests that CaZrOs is better suited for high-temperature appli-
cations. This observation aligns with the behavior of Young’s modulus, as Ty, and
Young’s modulus exhibit a strong correlation. We computed the melting tempera-
tures of these compounds as follows: CaZrOs (2121.71 K), CaZrOsSe (2114.90 K),
CaZrOSey (1520.92 K), and CaZrSes (1334.00 K).
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Chapter 4

Conclusions

We have investigated the structural, mechanical, electronic, and optical properties of
CaZrOs_,Se, (x = 0,1,2,3) perovskite semiconducting materials using generalized
gradient approximation. Selenium substitution for oxygen resulted in a remarkable
structural transformation, shifting from cubic to tetragonal phases in CaZrOsSe
and CaZrOSe,, subsequently returning to a cubic phase in CaZrSes. The stability
of these phases were confirmed by tolerance factor and negative formation energy.
The semiconducting nature of the electronic density of states and band structure
studies have been emphasized by the noticeable band gap between the valence and
conduction bands around the Fermi level. Indirect band gap value of 3.44 eV,
1.9 eV, 0.71 eV and 0.23 eV have been observed in CaZrO;_,Se, (r = 0,1,2,3)
compounds, that are drastically reduced by Se substitution at the O sites. The
optical properties demonstrated significant absorption coefficients in the order of 10*
cm™!, indicating strong light-absorbing capabilities, and they aligned closely with
the band structure analysis. These materials were well suited for optoelectronic
devices due to their absorption in the visible and ultraviolet region with extremely
low optical loss. Further indication of their potential came from their minimal
reflection and the refractive index of the studied compounds shows the optimal

range of polarization and transparency for photovoltaic applications like solar cells.
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Conclusions

Mainly, CaZrOsSe and CaZrOSe; emerged as promising candidates for solar cell
technology, with expected light absorption in the near-infrared range to ultraviolet.
The Debye temperature and melting temperature were both significantly reduced
by the Se substitution in terms of elastic properties. According to an assessment
of the compound’s mechanical properties confirmed that CaZrOs, CaZrOSe,, and

CaZrSes exhibit ductile characteristics, while CaZrO,Se displays brittle behavior.
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List of Abbreviations

AMF : Around Mean-Field

BO : Born-Oppenheimer

BZ : Brillouin Zone

CB : Conduction Band

CBM : Conduction Band Minima

DFT : Density Functional Theory

DOS : Density of States

FLL : Fully Localized Limit

FP-LAPW : Full-Potential Linearized Augmented Plane Wave
GGA : Generalized Gradient Approximation
HEG : Homogenous Electron Gas

HF : Hartree Fock

HK : Hohenberg-Kohn

KS : Kohn-Sham

LDA : Local Density Approximation

LSDA : Local Spin Density Approximation
PBE : Perdew-Burke Ernzerhof

PDOS : Partial Density of States

RHF : Restricted Hartree Fock

ROHF : Restricted Open-Shell Hartree Fock
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List of Abbreviations

SOC
[OAY%
VB
VBM
XC

Spin Orbit Coupling
Ultraviolet

Valence Band

Valence Band Maxima

Exchange Correlation

66



Bibliography

[1]

Shakeel Ahmad Khandy and Dinesh C Gupta. Investigation of structural,
magneto-electronic, and thermoelectric response of ductile SnAlO3 from high-

throughput DFT calculations. International Journal of Quantum Chemistry,
117(8):¢25351, 2017.

Ali M Huerta-Flores, JM Mora-Hernandez, Leticia M Torres-Martinez, Edgar
Moctezuma, D Sanchez-Martinez, Maria E Zarazia-Morin, and Bjorn Wick-
man. Extended visible light harvesting and boosted charge carrier dynamics in
heterostructured zirconate FeSy photocatalysts for efficient solar water split-
ting. Journal of Materials Science: Materials in Electronics, 29:18957-18970,
2018.

Xia Li and Jinling Zang. Hydrothermal synthesis and characterization of
lanthanum-doped NaTaO3 with high photocatalytic activity. Catalysis Com-
munications, 12(14):1380-1383, 2011.

I Hamideddine, H Zitouni, N Tahiri, O El Bounagui, and H Ez-Zahraouy. A
DFT study of the electronic structure, optical, and thermoelectric properties
of halide perovskite KGel;_,Br, materials: photovoltaic applications. Applied
Physics A, 127:1-7, 2021.

Muhammad Igbal Hussain, RM Arif Khalil, Fayyaz Hussain, A Manzoor Rana,
G Murtaza, and M Imran. Probing the structural, electronic, mechanical
strength and optical properties of tantalum-based oxide perovskites ATaOs

(A = Rb, Fr) for optoelectronic applications: First-principles investigations.
Optik, 219:165027, 2020.

Muhammad Igbal Hussain, RM Arif Khalil, Fayyaz Hussain, Muhammad Im-

ran, Anwar Manzoor Rana, and Sungjun Kim. Investigations of structural,

67



Bibliography

[10]

[11]

[13]

[14]

electronic and optical properties of YInO3 (Y= Rb, Cs, Fr) perovskite oxides
using mBJ approximation for optoelectronic applications: a first principles

study. Materials Science in Semiconductor Processing, 113:105064, 2020.

G Murtaza, Iftikhar Ahmad, B Amin, A Afaq, M Magbool, J Magssod, I Khan,
and M Zahid. Investigation of structural and optoelectronic properties of
BaThOj3. Optical Materials, 33(3):553-557, 2011.

NA Noor, Q@ Mahmood, M Rashid, Bakhtiar Ul Haq, and A Laref. The
pressure-induced mechanical and optoelectronic behavior of cubic perovskite
PbSnO3 via ab-initio investigations. Ceramics International, 44(12):13750—
13756, 2018.

Md Rasidul Islam, Biazid Kabir Moghal, and Raza Moshwan. Tuning the elec-
tronic, optical, and thermal properties of cubic perovskites CsPbCls_,Br, (n =
0, 1, 2, and 3) through altering the halide ratio. Physica Scripta, 97(6):065704,
2022.

Yongbo Yuan, Jungseok Chae, Yuchuan Shao, Qi Wang, Zhengguo Xiao, An-
drea Centrone, and Jinsong Huang. Photovoltaic switching mechanism in
lateral structure hybrid perovskite solar cells. Advanced Energy Materials,
5(15), 2015.

Samuel D Stranks, Giles E Eperon, Giulia Grancini, Christopher Menelaou,
Marcelo JP Alcocer, Tomas Leijtens, Laura M Herz, Annamaria Petrozza, and
Henry J Snaith. Electron-hole diffusion lengths exceeding 1 micrometer in an
organometal trihalide perovskite absorber. Science, 342(6156):341-344, 2013.

Qi-Jun Liu, Zheng-Tang Liu, Li-Ping Feng, and Hao Tian. Study of struc-
tural, elastic, electronic and optical properties of seven SrZrOs phases: First-
principles calculations. Journal of Solid State Chemustry, 196:425—-434, 2012.

SSA Gillani, Riaz Ahmad, Muhammad Rizwan, Muhammad Rafique, Ghu-
lam Ullah, CB Cao, and HB Jin. Effect of magnesium doping on band gap
and optical properties of SrZrOgs perovskite: a first-principles study. Optik,
191:132-138, 2019.

JA Souza and JP Rino. A molecular dynamics study of structural and dy-
namical correlations of CaTiOs. Acta Materialia, 59(4):1409-1423, 2011.

68



Bibliography

[15]

[16]

[17]

[18]

[19]

[20]

[23]

Pornsawan Sikam, Pairot Moontragoon, Chayanin Sararat, Attaphol Kara-
phun, Ekaphan Swatsitang, Supree Pinitsoontorn, and Prasit Thongbai. DF'T
calculation and experimental study on structural, optical and magnetic prop-
erties of Co-doped SrTiOs. Applied Surface Science, 446:92-113, 2018.

Mahpara Ghazanfar, Sikander Azam, Muhammad Farooq Nasir, Souraya
Goumri-Said, and Hussein Alrobei. Insight into electronic and optical prop-
erties of Eu+ 2-doped CaTiO3 from GGA+ U calculations. Journal of Solid
State Chemustry, 293:121796, 2021.

O Lobacheva, YM Yiu, N Chen, TK Sham, and LV Goncharova. Changes in
local surface structure and Sr depletion in Fe-implanted SrTiO3 (001). Applied
Surface Science, 393:74-81, 2017.

Simone Sanna, Christian Thierfelder, S Wippermann, Tripurari Prasad Sinha,
and Wolf Gero Schmidt. Barium titanate ground-and excited-state properties
from first-principles calculations. Physical Review B—Condensed Matter and
Materials Physics, 83(5):054112, 2011.

Naveed Ahmed Noor, M Rashid, Qasim Mahmood, B Ul Haq, MA Naeem,
and Amel Laref. Optoelectronic pressure dependent study of MgZrOs oxide

and ground state thermoelectric response using Ab-initio calculations. Opto-
FElectronics Review, 27(2):194-201, 2019.

DM Hoat, JF Rivas Silva, and A Méndez Blas. First principles study of struc-
tural, electronic and optical properties of perovskites CaZrOs and CaHfOg3 in
cubic phase. Solid State Communications, 275:29-34, 2018.

ZF Hou. Ab initio calculations of elastic modulus and electronic structures of
cubic CaZrOs. Physica B: Condensed Matter, 403(17):2624-2628, 2008.

Md Atikur Rahman, Wakil Hasan, Rukaia Khatun, Md Zahid Hasan, Md Hafi-
jur Rahman, Sushmita Sarker, Mahbub Hasan, and Jannatul Ferdous Lubna.
An ab-initio study to investigate the structural, mechanical, electrical, op-
tical and thermal properties of the AZrO3; (A = Mg, Ca, Sr, Ba, Sn, Cu)
compounds. Materials Today Communications, 34:105339, 2023.

Muhammad Rashid, RB Behram, Farooq Aziz, Asif Mahmood, Nessrin A
Kattan, and SM Ramay. Optoelectronic pressure dependent study of alkaline

69



Bibliography

[25]

[20]

[27]

28]

[30]

earth based zirconates AZrO3 (A = Ca, Ba, Sr) using ab-initio calculations.
The Furopean Physical Journal B, 93:1-9, 2020.

I Zeba, M Ramzan, Riaz Ahmad, M Shakil, M Rizwan, M Rafique, M Sarfraz,
M Ajmal, and SSA Gillani. First-principles computation of magnesium doped
CaZrOj3 perovskite: a study of phase transformation, bandgap engineering and
optical response for optoelectronic applications. Solid State Communications,
313:113907, 2020.

Yu-Liang Liu, Chuan-Lu Yang, Mei-Shan Wang, Xiao-Guang Ma, and You-
Gen Yi. Te-doped perovskite NaTaOj3 as a promising photocatalytic material
for hydrogen production from water splitting driven by visible light. Materials
Research Bulletin, 107:125-131, 2018.

I Ait Brahim, N Bekkioui, M Tahiri, and H Ez-Zahraouy. Doping effect of
chalcogens on electronic and optical properties of perovskite LiNbO3 com-
pound: Ab initio calculations. Chemical Physics, 550:111320, 2021.

Zhonghai Yu, Chenhua Deng, Sen Kong, Haolei Hui, Jiale Guo, Qizhong Zhao,
Fanghua Tian, Chao Zhou, Yin Zhang, Sen Yang, et al. Transition metal-
doped chalcogenide perovskite magnetic semiconductor BaZrSs. Journal of
Magnetism and Magnetic Materials, 563:169886, 2022.

B Akenoun, S Dahbi, N Tahiri, O El Bounagui, H Ez-Zahraouy, and A Beny-
oussef. The effect of chalcogens-doped with dilation strain on the electronic,

optic, and thermoelectric properties of perovskite BaSnO3 compound. Journal
of the Korean Ceramic Society, 59(5):715-728, 2022.

H Akter, MM Hossain, MM Uddin, SH Naqib, and MA Ali. Effects of S substi-
tution on the structural, optoelectronic, and thermomechanical properties of

KTaOj3 through density functional theory. Journal of Physics and Chemistry
of Solids, 190:112021, 2024.

RM Arif Khalil, Muhammad Igbal Hussain, Rabail Fatima, Fayyaz Hussain,
Anwar Manzoor Rana, HH Hegazy, and Abeer Mera. Effect of dopants on
the structural, optoelectronic and magnetic properties of pristine AgGaOs3

perovskite: A first principles study. Optik, 244:167555, 2021.

70



Bibliography

[31]

[32]

[33]

[34]

[35]

[39]

[40]

[41]

[42]

H Labrim, Y Selmani, S Ziti, S Idrissi, R El Bouayadi, D Zejli, and L. Bahmad.
Study of the perovskites CaZrOs_,S, (z = 0, 1, 2 and 3) for photovoltaic
applications. Solid State Communications, 363:115105, 2023.

B Mouhib, S Dahbi, A Douayar, N Tahiri, O El Bounagui, and H Ez-Zahraouy.
Theoretical investigations of electronic structure and optical properties of S, Se
or Te doped perovskite ATiO3 (A = Ca, Ba, and Sr) materials for eco-friendly
solar cells. Micro and Nanostructures, 163:107124, 2022.

S Dahbi, N Tahiri, O El Bounagui, and H Ez-Zahraouy. The new eco-friendly
lead-free zirconate perovskites doped with chalcogens for solar cells: Ab initio

calculations. Optical Materials, 109:110442, 2020.

H Zitouni, N Tahiri, O El Bounagui, and H Ez-Zahraouy. Electronic, optical
and transport properties of perovskite BaZrS; compound doped with Se for
photovoltaic applications. Chemical Physics, 538:110923, 2020.

Robert G Parr and Weitao Yang. Density-functional theory of the electronic
structure of molecules. Annual Review of Physical Chemistry, 46(1):701-728,
1995.

David J Griffiths and Darrell F Schroeter. Introduction to quantum mechanics.
2018.

Erwin Schrodinger. An undulatory theory of the mechanics of atoms and
molecules. Physical Review, 28(6):1049, 1926.

Paul Adrien Maurice Dirac. The physical interpretation of the quantum dy-
namics. Proceedings of the Royal Society of London. Series A, Containing
Papers of a Mathematical and Physical Character, 113(765):621-641, 1927.

David C Young. Density functional theory. Computational Chemistry, pages
42-48, 2001.

Wolfgang Pauli. The connection between spin and statistics. Physical Review,
58(8):716, 1940.

Arthur Jabs. Connecting spin and statistics in quantum mechanics. Founda-
tions of Physics, 40:776-792, 2010.

Attila Szabo and Neil S Ostlund. Modern quantum chemistry: introduction to

advanced electronic structure theory. Courier Corporation, 2012.

71



Bibliography

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[51]

[52]

[53]

Nouredine Zettili. Quantum mechanics: concepts and applications. 2009.

Libero J Bartolotti and Ken Flurchick. An introduction to density functional
theory. Reviews in Computational Chemistry, pages 187-216, 1996.

E BRoDA. Nuclear chemistry. Chemistry Today: A Guide for Teachers:
Selected Topics for a Modern Approach to the Teaching of School Chemistry,
page 3355, 1963.

Niklas Zwettler. Density functional theory.

Jan Almlof. Notes on Hartree-Fock theory and related topics. Lecture Notes
in Quantum Chemistry II: Furopean Summer School in Quantum Chemistry,
pages 1-90, 1994.

Phillip James Edwin Peebles. Quantum mechanics. Princeton University
Press, 1992.

Albert T Fromhold. Quantum mechanics for applied physics and engineering.

Courier Corporation, 2012.

P Lykos and GW Pratt. Discussion on the Hartree-Fock approximation. Re-
views of Modern Physics, 35(3):496, 1963.

Charlotte Froese Fischer. Hartree Fock method for atoms. A numerical ap-
proach. 1977.

Wolfram Koch and Max C Holthausen. A chemist’s guide to density functional
theory. John Wiley & Sons, 2015.

Robert G Parr. Density functional theory. FElectron Distributions and the
Chemical Bond, pages 95-100, 1982.

Walter Kohn. Electronic structure of matter-wave functions and density func-
tionals. Rev. Mod. Phys., 71(5):1253-1266, 1999.

Per-Olov Lowdin. Scaling problem, virial theorem, and connected relations in

quantum mechanics. Journal of Molecular Spectroscopy, 3(1-6):46-66, 1959.

Pierre Hohenberg and Walter Kohn. Inhomogeneous electron gas. Physical
Review, 136(3B):B864, 1964.

72



Bibliography

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Stig Lundqvist and Norman H March. Theory of the inhomogeneous electron

gas. Springer Science & Business Media, 2013.

JMC Scott. LXXXII. The binding energy of the Thomas-Fermi Atom. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Sci-
ence, 43(343):859-867, 1952.

Klaus Capelle. A bird’s-eye view of density-functional theory. Brazilian Jour-
nal of Physics, 36:1318-1343, 2006.

Philip Peter Rushton. Towards a non-local density functiona description of

exchange and correlation. PhD thesis, Durham University, 2002.

Elliot H Lieb. Variational principle for many-fermion systems. Physical Review
Letters, 46(7):457, 1981.

Stefaan Cottenier et al. Density Functional Theory and the family of LAPW-
methods: a step-by-step introduction. Instituut voor Kern-en Stralingsfysica,
KU Leuven, Belgium, 4(0):41, 2002.

Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange
and correlation effects. Physical Review, 140(4A):A1133, 1965.

Richard M Martin. FElectronic structure: basic theory and practical methods.

Cambridge university press, 2020.

Pawel Scharoch and Maciej Winiarski. An efficient method of DFT/LDA
band-gap correction. Computer Physics Communications, 184(12):2680-2683,
2013.

Axel D Becke. Density-functional exchange-energy approximation with correct

asymptotic behavior. Physical Review A, 38(6):3098, 1988.

Ulf Von Barth and Lars Hedin. A local exchange-correlation potential for the
spin polarized case. i. Journal of Physics C: Solid State Physics, 5(13):1629,
1972.

Gang Zhang and Charles B Musgrave. Comparison of DF'T methods for molec-
ular orbital eigenvalue calculations. The Journal of Physical Phemistry A,
111(8):1554-1561, 2007.

73



Bibliography

[69]

[72]

73]

Matteo Cococcioni and Stefano De Gironcoli. Linear response approach to the
calculation of the effective interaction parameters in the LDA+ U method.
Physical Review B—Condensed Matter and Materials Physics, 71(3):035105,
2005.

Walter Kohn. Nobel lecture: Electronic structure of matter-wave functions
and density functionals. Reviews of Modern Physics, 71(5):1253, 1999.

P. Blaha, K. Schwarz, P. Sorantin, and S.B. Trickey. Full-potential, linearized
augmented plane wave programs for crystalline systems. Computer Physics
Communications, 59(2):399-415, 1990.

Georg K. H. Madsen, Peter Blaha, Karlheinz Schwarz, Elisabeth Sjostedt, and
Lars Nordstrom. Efficient linearization of the augmented plane-wave method.
Phys. Rev. B, 64:195134, Oct 2001.

Peter Blaha, Karlheinz Schwarz, Georg Madsen, D. Kvasnicka, and J. Luitz.
WIEN2k: An augmented plane wave plus local orbitals program for calculating

crystal properties. Technische Universitat Wien, Wien, 28, 01 2001.

P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rewv.,
136:B864-B871, Nov 1964.

M. Stadele, J. A. Majewski, P. Vogl, and A. Gorling. Exact Kohn-Sham
exchange potential in semiconductors. Phys. Rev. Lett., 79:2089-2092, Sep
1997.

P. Blaha, K. Schwarz, P. Sorantin, and S.B. Trickey. Full-potential, linearized
augmented plane wave programs for crystalline systems. Computer Physics

Communications, 59(2):399-415, 1990.

Zhimei Sun, Sa Li, Rajeev Ahuja, and Jochen M. Schneider. Calculated elastic
properties of Mo AIC (M = Ti, V, Cr, Nb and Ta). Solid State Commaunications,
129(9):589-592, 2004.

Akeem Adekunle Adewale, Abdullah Chik, Tijjani Adam, Olaniyi Kamil
Yusuff, Sabur Abiodun Ayinde, and Yekinni Kolawole Sanusi. First principles
calculations of structural, electronic, mechanical and thermoelectric properties
of cubic ATiO3 (A= Be, Mg, Ca, Sr and Ba) perovskite oxide. Computational
Condensed Matter, 28:¢00562, 2021.

74



Bibliography

[79]

[30]

[81]

[82]

[83]

Sadia Riaz, Muhammad Yaseen, Mehwish Khalid Butt, Shanza Mubashir,
Javed Igbal, Abeer S. Altowyan, A. Dahshan, Adil Murtaza, Munawar Iqgbal,
and A. Laref. Physical characteristics of NaTaO3 under pressure for electronic

devices. Materials Science in Semiconductor Processing, 133:105976, 2021.

Narasak Pandech, Kanoknan Sarasamak, and Sukit Limpijumnong. FElastic
properties of perovskite ATiO3 (A = Be, Mg, Ca, Sr, and Ba) and PbBOj3 (B
= Ti, Zr, and Hf): first principles calculations. Journal of Applied Physics,
117(17), 2015.

F Chiker, B Abbar, B Bouhafs, and P Ruterana. Interband transitions of
wide-band-gap ternary pnictide BeCNjy in the chalcopyrite structure. Physica
Ptatus Solidi (b), 241(2):305-316, 2004.

A Hossain, MA Ali, MM Uddin, SH Naqib, and MM Hossain. Theoretical stud-
ies on phase stability, electronic, optical, mechanical and thermal properties
of chalcopyrite semiconductors HgXNy (X= Si, Ge and Sn): a comprehensive
DFT analysis. Materials Science in Semiconductor Processing, 172:108092,
2024.

H. Absike, N. Baaalla, L. Attou, H. Labrim, B. Hartiti, and H. Ez-zahraouy.
Theoretical investigations of structural, electronic, optical and thermoelectric
properties of oxide halide perovskite ACoO3 (A = Nd, Pr or La). Solid State
Communications, 345:114684, 2022.

S. Parida, S.K. Rout, L.S. Cavalcante, E. Sinha, M. Siu Li, V. Subramanian,
N. Gupta, V.R. Gupta, J.A. Varela, and E. Longo. Structural refinement,
optical and microwave dielectric properties of BaZrOs. Ceramics International,
38(3):2129-2138, 2012.

G. Murtaza, N. Yousaf, A. Laref, and M. Yaseen. Effect of varying pnictogen
elements (Pn = N, P, As, Sb, Bi) on the optoelectronic properties of SrZnsPns,.
Zeitschrift fiir Naturforschung A, 73(4):285-293, 2018.

Md Atikur Rahman, Mahbub Hasan, Jannatul Ferdous Lubna, Rukaia
Khatun, Sushmita Sarker, Md Zahid Hasan, Aslam Hossain, Md Mukter Hos-
sain, Md Rasheduzzaman, Wakil Hasan, et al. Comparative study of the
structural, mechanical, electronic, optical and thermodynamic properties of
superconducting disilicide YT,Siy (T= Co, Ni, Ru, Rh, Pd, Ir) by DFT sim-
ulation. Journal of Physics and Chemistry of Solids, 178:111342, 2023.

75



Bibliography

[87]

[92]

Jay N Zemel, James D Jensen, and Richard B Schoolar. Electrical and optical
properties of epitaxial films of PbS, PbSe, PbTe, and SnTe. Physical Review,
140(1A):A330, 1965.

Max Born. On the stability of crystal lattices. I. 36(2):160-172, 1940.

Ibrahim Isah, Salisu I Kunya, Sani Abdulkarim, and Bello Usama Ibrahim.
Effect of pressure on structural, elastic and electronic properties of perovskite
PbTiOs. Journal for Foundations and Applications of Physics, 8(2):179-190,
2021.

Richard Hill. The elastic behaviour of a crystalline aggregate. Proceedings of
the Physical Society. Section A, 65(5):349, 1952.

Saad Tariq, Afaq A, Saher Saad, and Samar Tariq. Structural, electronic and
elastic properties of the cubic CaTiO3z under pressure: A DFT study. AIP
Advances, 5, 07 2015.

M. Mozahar Ali, M.A. Hadi, Istiak Ahmed, A.F.M.Y. Haider, and A.K.M.A
Islam. Physical properties of a novel boron-based ternary compound TisInB,.
Materials Today Communications, 25:101600, 2020.

WANG Yunjie, ZHANG Zhiyuan, WEN Dulin, WU Zhencheng, and SU Xin.
First principles study on mechanical properties, electronic structure and op-
tical properties of Ni, Cu, Zn doped tetragonal PbTiO3. Journal of Synthetic
Crystals, 53(2), 2024.

M.A. Ali and Muhammad Waqas Qureshi. DFT insights into the new Hf-based
chalcogenide MAX phase HfsSeC. Vacuum, 201:111072, 2022.

Mauwa M Namisi, Robinson J Musembi, Winfred M Mulwa, and Bernard O
Aduda. DFT study of cubic, tetragonal and trigonal structures of KGeCls
perovskites for photovoltaic applications. Computational Condensed Matter,

34:¢00772, 2023.

Mumtaz Manzoor, Debidatta Behera, Ramesh Sharma, Muhammad Waqas
Igbal, Sanat Kumar Mukherjee, Rabah Khenata, Saleh S Alarfaji, and Huda A
Alzahrani. Investigation of the structural, mechanical, optoelectronic and,
thermoelectric characteristics of cubic GeTiOs3: An ab initio study. Materials
Today Communications, 34:105053, 2023.

76



Bibliography

[97]

[98]

[100]

[101]

[102]

[103]

[104]

[105]

Nadjia Tayebi, Kada Bidai, Mohammed Ameri, Slamani Amel, Ibrahim Ameri,
Y Al-Douri, and Dinesh Varshney. Pressure and temperature dependence of
the structural, elastic and thermodynamic properties of potassium telluride:
First-principles calculations. Chinese Journal of Physics, 55(3):769-779, 2017.

Amel Hachemi, H Hachemi, A Ferhat-Hamida, and Layachi Louail. Elasticity
of Sr'TiO3 perovskite under high pressure in cubic, tetragonal and orthorhom-
bic phases. Physica Scripta, 82(2):025602, 2010.

Xiong Yang, Ying Wang, Qinggong Song, Yifei Chen, and Yan Hong Xue.
Pressure effects on structural, electronic, elastic, and optical properties of cubic
and tetragonal phases of BaZrOs. Acta Physica Polonica A, 133(5):1138-1143,
2018.

Li Li, Donald J Weidner, John Brodholt, Dario Alfe, G David Price, Razvan
Caracas, and Renata Wentzcovitch. Elasticity of CaSiO3 perovskite at high

pressure and high temperature. Physics of the Earth and Planetary Interiors,
155(3-4):249-259, 2006.

Orson L Anderson. A simplified method for calculating the debye temperature
from elastic constants. Journal of Physics and Chemistry of Solids, 24(7):909—
917, 1963.

Sajad Ahmad Dar, Ramesh Sharma, and Abhishek Kr Mishra. Phonon sta-
bility, electronic structure results, mechanical and thermodynamic properties
of RbSbO3; and CsSbOj3 perovskite oxides: Ab initio investigation. Journal of
Molecular Graphics and Modelling, 90:120-127, 2019.

Zi-jiang Liu, Xiao-wei Sun, Cai-rong Zhang, Jian-bo Hu, Ting Song, and
Jian-hong Qi. Elastic tensor and thermodynamic property of magnesium sili-

cate perovskite from first-principles calculations. Chinese Journal of Chemical
Physics, 24(6):703, 2011.

MA Ali, N Jahan, and AKMA Islam. Sulvanite compounds Cuz3TMS, (TM
= V, Nb and Ta): elastic, electronic, optical and thermal properties using

first-principles method. arXww preprint arXiv:1510.0556/, 2015.

Jianping Long, Lijun Yang, and Xuesong Wei. Lattice, elastic properties and
debye temperatures of ATiO3 (A = Ba, Ca, Pb, Sr) from first-principles.
Journal of Alloys and Compounds, 549:336-340, 2013.

7



Bibliography

[106]

107]

A Boudali, M Driss Khodja, B Amrani, D Bourbie, K Amara, and A Abada.
First-principles study of structural, elastic, electronic, and thermal properties
of SrTiO3 perovskite cubic. Physics Letters A, 373(8-9):879-884, 2009.

Akira Yoshiasa, Tomotaka Nakatani, Akihiko Nakatsuka, Maki Okube, Kazu-
masa Sugiyama, and Tsutomu Mashimo. High-temperature single-crystal X-
ray diffraction study of tetragonal and cubic perovskite-type PbTiO3 phases.
Acta Crystallographica Section B: Structural Science, Crystal Engineering and
Materials, 72(3):381-388, 2016.

78



